Attendance | UCAS code/apply | Year of entry |
---|---|---|
3 years full time | GG1J | 2017 2018 |
4 years full time including sandwich year | GG1H | 2017 2018 |
4 years full time including foundation year | GGCH | 2017 2018 |
6 years part time | Apply direct to the University | 2017 2018 |
This course is ideal if you enjoy mathematics and statistics and would like to use your skills to model future events and risk. It is similar to the BSc(Hons) Actuarial Science course but gives greater flexibility to explore other areas of mathematics and statistics with a little less specialisation in actuarial work.
This course is accredited by the Institute of Mathematics & its Applications (IMA).
Year 1 is shared with a suite of related courses, giving you the opportunity to transfer if you wish. It will equip you with a broad understanding across a range of areas. You will study mathematical methods and fundamental statistical and computing concepts. Later in the course you will apply them to the evaluation of financial risks.
Year 2 moves on to actuarial science topics, as well as mathematical topics that underlie more realistic quantitative modelling. You will study actuarial modelling and models involving lifetime distributions, and mathematical problems involving several variables, together with differential equations that represent how quantities change. The predictive power of statistics will begin to become evident, with the statistical module providing an essential building block for Year 3 modules. Following successful completion of Year 2, you will have an opportunity to take a professional placement year to develop your skills in a real work setting.
Year 3 combines advanced topics from the fields of mathematics, statistics and actuarial science, preparing you for entry into the profession. You will study mathematical techniques that can be used to value cash flows dependent on death, survival or other risks. You will also have the opportunity to extend your knowledge and abilities by applying them to relevant research.
Please note that this is an indicative list of modules and is not intended as a definitive list. Those listed here may also be a mixture of core and optional modules.
This module provides the foundations for further study of (applicable) mathematics. The basic ideas of mathematics as a discipline are introduced. Topics from different areas of mathematics which may readily be applied to solve problems in the real world are considered with emphasis on study of the Calculus, one of the most powerful tools of modern mathematics and theoretical science. As a necessary preliminary to this work we first clarify our ideas of rational, real and complex numbers. The fundamental concepts of calculus, in particular, that of a limit, are introduced and the continuity and differentiability of functions on the real line are explored. The derivative concept is generalised for functions of several variables extending the breadth of its application greatly and the study of ordinary differential equations is commenced.
On successful completion of the module, you will be able to:
This module is a core part of most mathematics courses and builds upon A-level study in three strands: it aims to develop s personal skills and understanding of degree-level study; it introduces computer programming and software as a useful problem-solving tool in mathematics; and it develops mathematical techniques in a computing context that will be used in parallel and subsequent modules.
On successful completion of the module, you will be able to:
This module introduces basic probability and statistical theory, concepts and their applications to real life problem solving and learn about different types of data and how to present and summarise these. The module also covers statistical inference and the concepts of confidence intervals and hypothesis testing for the population mean and variance, for proportions, for comparing measures between two populations and for contingency tables and goodness of fit to a known distribution.
On successful completion of the module, you will be able to:
This module is designed to build on the work previously gained in order to deliver more advanced tools in calculus and numerical methods thus permitting the solution of a much wider set of problems associated with the real world. In turn, concepts developed in this module are used extensively at Level 6.
On successful completion of the module, you will be able to:
This module is designed to build on the work previously gained in order to deliver more advanced tools in calculus and numerical methods thus permitting the solution of a much wider set of problems associated with the real world. In turn, concepts developed in this module are used extensively at Level 6.
On successful completion of the module, you will be able to:
This module develops and builds on the concepts of probability and statistical modelling studied at the previous level. The module introduces some of the major discrete and continuous statistical distributions which underpin statistical methodology and the concepts of joint distributions. The module also deals with statistical modelling and how to take data analysis beyond basic techniques. The theory and practical application involved in investigating multivariate data using statistical modelling from initial investigation through to validation of a model is investigated. Example driven practice in using industry standard statistical software for the purpose of statistical modelling and how to communicate the results of their analyses effectively and coherently will be reviewed. This module provides a sound grounding in theoretical and practical statistical analysis and forms the basis for learning more advanced multivariate methodologies later in the program. It also covers much of the material required to satisfy the IFA CT3 criteria.
On successful completion of the module, you will be able to:
The module provides a grounding in stochastic processes and survival models and their practical applications. The module builds on the probability and statistics modules by introducing a time varying element. The concepts and purpose of stochastic processes, Markov chains and Markov processes are introduced. The module goes on to define and apply survival models and estimation procedures for lifetime distributions.
On successful completion of the module, you will be able to:
Choose from the following:
This module covers the syllabus of the Institute and Faculty of Actuaries' Subject CT2 – 'Finance and Financial Reporting'. The module deals with the basic understanding of corporate finance including knowledge of the instruments used by companies to raise finance and manage financial risk. In addition, the module includes the ability to interpret the accounts and financial statement of companies and financial institutions.
On successful completion of the module, you will be able to:
This module builds upon the foundations in mathematics and computing with the aim to systematically develop mathematical modelling skills and computer programming as well as systems analysis skills, whilst continuing to develop mathematical techniques in a computing context.
On successful completion of the module, you will be able to:
This module builds upon previous mathematics studied, by concentrating initially on methods of proof and clear, logical exposition of mathematical arguments. These are essential skills for mathematicians to possess in order to perform their academic tasks and to communicate their findings efficiently. Armed with this approach to mathematics, the module progresses to develop more rigorously, various techniques involving real variables to include more detailed justification of some calculus techniques which have previously been encountered. The remaining content builds on the complex number work studied by moving into the realm of complex valued functions.
On successful completion of the module, you will be able to:
This module aims to introduce the concept and practice of statistical thinking from the origins of a data analysis problem through the various stages of problem solving to obtaining a reliable solution. The module deals with how to interpret and evaluate a statistical problem and choose, use and apply the appropriate theoretical methodology in order to solve it. Experience in working with peers in undertaking and completing a data analysis and in presenting their findings in a professional manner will be undertaken. New theoretical material will also be introduced during the module to build knowledge and to illustrate the importance of choosing the correct methodology for a given problem. The module will provide practice in using industry-standard statistical software and in effective communication of results. This module provides practice and training in the aspects of statistical thinking, planning and analysis which are essential in a competent graduate statistician.
On successful completion of the module, students will be able to:
This module provides a grounding in mathematical techniques which can be used for pricing and valuing life insurance and pension products, with examples drawn from current professional practice. Mathematical techniques used to model and value cash flows which depend on death, survival or other uncertain risks are explained. The module goes on to define simple assurance and annuity contracts and develop practical methods of evaluating their expected values and variances. The module covers the material required for Subject CT5 of The Institute and Faculty of Actuaries.
On successful completion of the module, you will be able to:
This module consolidates and further develops the concepts previously acquired; consisting of two distinct but interrelated parts. The PDE part builds on analytical and numerical methods for solving ODEs whilst in the optimisation section the ideas of using calculus to find stationary points of functions (of one or two variables), introduced in earlier modules are generalised and extended to cases where the functions are constrained (by both equations and inequalities). An holistic approach covering both analytical and (approximate) numerical techniques is adopted throughout. This means that a wide range of PDEs covering many areas of application may be solved – and similarly a variety of calculus-based methods for finding optima is considered and their appropriateness for different situations discussed in the context of recent research in the area.
On successful completion of the module, you will be able to:
Choose from the following:
The aim of the module is to provide further grounding in statistical techniques of particular relevance to insurance work. The module explains how insurance and reinsurance operates and how insurance products and services are priced by considering appropriate risk measures. The main theoretical concepts of statistical inference and probability theory that were acquired in previous modules are extended and practical applications in insurance are shown. The module encompasses loss distributions, risk models, ruin theory, decision theory, Bayesian estimation and credibility theory, generalised linear models, time series models and principles of Monte Carlo simulation. The module covers the material required for Subject CT6 of The Institute and Faculty of Actuaries.
On successful completion of the module, you will be able to:
This module serves as an introduction to the mathematics and statistics of modern portfolio theory, the mathematical, stochastic and statistical models of risky assets and the theory of pricing contracts based on these assets. It is intended to cover the requirements of CT8 from the Institute and Faculty of Actuaries.
On successful completion of the module, you will be able to:
This module builds upon the foundations in computing previously studied and aims to further develop mathematical modelling, computer programming, problem-solving and systems analysis skills with applications in a mathematical context. Further topics in computing are presented and analysed as solutions to common problems in mathematical and computational modelling.
On successful completion of the module, you will be able to:
This module gives an insight into the theoretical and practical aspects of mathematics education in schools, particularly for the 11–16 age range. It is intended to foster skills of independent learning, critical analysis, information retrieval and enhanced communication. The first half of the module covers important issues in mathematics education such as the role and content of the National Curriculum. Armed with theoretical knowledge the student is placed in a local secondary school or college for the second semester. The process is based on the nationally recognised model of the undergraduate ambassador scheme which is designed to give students interested in becoming mathematics teachers a chance to gain relevant experience in the field. In the placement they act initially as observers, but gradually they progress to become classroom assistants and, if they can demonstrate appropriate aptitude, ultimately deliver a session to a group or to the whole class, under the guidance of the mentoring teacher.
On successful completion of the module, you will be able to:
This module offers the opportunity to demonstrate skills and understanding gained to date on the course through application to a project of their choice. Typically it involves drawing upon work from several different areas of the course thus reinforcing the coherence of the programme, highlighting connections (and often interdependence) between the different areas studied to be able to give an overview. It also represents an opportunity to further develop vital skills in areas of research, time and project management, and presentation as well as in technical areas.
On successful completion of the module, you will be able to:
This module has two aspects: firstly, the application of time series modelling techniques in forecasting is introduced with background gained in earlier modules. This part includes both non-probabilistic algorithmic methods as well as the Box-Jenkins ARIMA probabilistic modelling techniques. The methods are applied to real and up-to-date time series data sets using MS-Excel and SAS software packages. Emphasis is placed on practicability of methods and their applications, although the theoretical foundation also plays a significant role in introducing the methodologies involved. You will have the opportunity to acquire, develop and consolidate both modelling and software skills through a series of exercises during practicals and tutorial sessions.
The second part of the course uses and builds upon the distribution theory with an introduction to the important properties of estimators, Neyman-Pearson's lemma and the generalised likelihood ratio test with numerical applications; followed by the Bayesian methodology and its relevance to the statistical decision making problems. Here emphasis is placed on introducing theoretical concepts but numerical techniques such as statistical simulation is also used in demonstrating applications. Bayesian and frequentist's approaches to decision-making problems are also compared with the advantages involved are identified and discussed.
On successful completion of the module, you will be able to:
The module introduces a variety of operational research techniques and the basic concepts and ideas of mathematical programming. The module goes on to explain how to apply operational techniques such as network models, inventory models, quality control and heuristics to real life problem solving issues. The module shows how industrial problems of optimization may be written in mathematical form. The module also introduces the simplex algorithm and its variants and demonstrates how such problems may be solved via these methods. Problems of a nonlinear nature are also discussed and solved. Other topics covered within the module include the methods of Lagrange multipliers, the Kuhn-tucker procedure and an introduction to game theory. The module provides an essential introduction to operational research and mathematical programming techniques and provides a depth of detail that sufficiently prepares for further study and research into advanced techniques within the applied mathematics and statistics fields.
On successful completion of the module, you will be able to:
You will have the opportunity to study a foreign language, free of charge, during your time at the University on a not-for-credit basis as part of the Kingston Language Scheme. Options currently include: Arabic, French, German, Italian, Japanese, Mandarin, Portuguese, Russian and Spanish.
Most of our undergraduate courses support studying or working abroad through the University's Study Abroad or Erasmus programme.
Find out more about where you can study abroad:
If you are considering studying abroad, read what our students say about their experiences.
The scrolling banner(s) below display some key factual data about this course (including different course combinations or delivery modes of this course where relevant).
We aim to ensure that all courses and modules advertised are delivered. However in some cases courses and modules may not be offered. For more information about why, and when you can expect to be notified, read our Changes to Academic Provision.
A copy of the regulations governing this course is available here
Details of terms dates for this course can be found here