Search our site
Search our site

Advanced Product Design Engineering Masters (MSc)

Mode Duration Attendance Start date
Full time 1 year Delivered in one-week blocks September 2019
January 2019
Full time 2 years including professional placement Delivered in one-week blocks plus professional placement September 2019
January 2019
Part time 2 years Delivered in one-week blocks September 2019
January 2019

Choose Kingston's Advanced Product Design Engineering MSc

This course focuses on the latest technology in modern CAD/CAM/CAE/PLM applications to enable students to acquire knowledge and understanding of rapid design and manufacture of a new product from a single computer terminal, without the need for lengthy prototype and test cycles. Implementing this technology is essential in today's global marketplace, where survival relies on being first to market.

The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng(Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration.

Key features

  • Teaching in many technical modules is backed up by appropriate hands-on experience and workshops, which can be transferred directly to your working environment.
  • Academic teaching is complemented by visits from industry experts. You will also have plenty of opportunities to attend relevant technical seminars, both within and outside the University.
  • You can tailor your course to enhance your career ambitions through your module choices and the project dissertation gives you the opportunity to choose a field of study in which to establish yourself as a specialist.

What will you study?

This programme is structured to provide you with the latest developments in this still-evolving discipline of digital product development. It focuses on providing you with hands-on experience of the latest computing applications throughout the entire product development cycle, from simple 3D modelling techniques to an extended capability of 3D laser scanning to generate complex Class A surfaces.

CAE 3D printing

Students also gain practical and theoretical knowledge of analytical design tools to assist the product validation process by applying advanced mechanism design simulation and finite elements analysis techniques. Additionally, examines the importance of advanced manufacturing techniques and the methods used to integrate Computer Aided Manufacturing CAM with computer numerical control, 3D printing technologies into product data management PDM.

Additionally, the programme enables you to gain the entrepreneurship, management and business skills necessary to take on leadership roles in major product design engineering projects.

The hands-on approach, using our state-of-the art multidisciplinary laboratories with state-of-the-art equipment from 3D Printing, CNC machining, Laser Scanning, Metrology, Materials Testing and many more, is a valuable part of the course. The course dovetails with research activities of the teaching staff, implementing the latest advances in our research. Utilising applied research, you have the opportunity to do your own research within an individual industry-relevant 'capstone' project. This includes preparation of a scientific paper, providing an opportunity for that first breakthrough into publishing your work.

Assessment

Assessment 200-400 words

The assessment strategy is designed to support your learning experience. Assessment criteria are clear, transparent and explicit and the scope of each assessment is discussed with students within modules. The course employs a combination of assessment methods will be used throughout the course. These elements include module assignments, module examinations, in-class tests, experiment reports, industrial visit reports, seminars, verbal presentations and the project dissertation.

Each module leader is responsible for ensuring that the method of assessment reflects the aims and learning objectives of the module, is demanding and stimulating and at the appropriate master level. Formative assessments are embedded into the delivery pattern of all the modules and are designed to help students learn more effectively by giving them feedback to improve their performance and feedforward towards summative assessments. Reflective practice by students and feedback from designated Personal tutors will also form part of the formative assessments. Group activities are an important part of the course teaching and assessment strategy where students learn and improve through peer feedback.

The individual project provides a challenge to the candidate to undertake a real world problem because most projects are industrially orientated.  Students will be given close guidance to select a project which is relevant to the chosen field. During the project, the student will be expected to apply the knowledge learnt during the course to achieve agreed deliverables, whilst satisfying any given constraints. Key skills in communication, presentation, literature search, problem analysis, project planning, report writing and solution justification are all part of the learning objectives defined in the field.

Coursework are mainly submitted electronically  on the CANVAS of each module. You are reminded of the faculty policy for the late submission of coursework. Any work submitted up to a week late will be capped at minimum 50%, anything submitted later than this will receive a zero mark.

Work placement scheme

Many postgraduate courses at Kingston University allow students to do a 12-month work placement as part of their course. The responsibility for finding the work placement is with the student; we cannot guarantee the work placement, just the opportunity to undertake it. As the work placement is an assessed part of the course, it is covered by a student's tier 4 visa.

Invoicing on the placement courses is split into two stages. The standard course fee is payable in year 1 with the placement fee invoiced in year 2. Therefore, students starting in September 2017 would therefore be charged the placement fee of £1,070 in September 2018. Students commencing the course in September 2018 will be invoiced the placement fee in 2019 (provisionally £1,230).

This amount will only be charged to your account after you find a placement and are enrolled on the module. You will not be charged this fee if you do not manage to secure a work placement.

Find out more about the postgraduate work placement scheme.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Core modules

  • This module is designed to provide you with the research skills and techniques necessary to select and justify a research topic, plan project execution, use various resources to carry out a literature search and successfully complete the project and other module assignments on the course. It also addresses issues related to presentation of technical reports at master level and for the purpose of wider publication in learned media.

    The module further develops your knowledge and skills in business and management, with a particular focus on entrepreneurship and innovation. It supports you in producing proposals for enterprise ideas such as new products or services, or innovations in existing processes or organisations. Concepts of total quality management to enhance quality of products and processes in an industrial setting are presented and application of supporting quality tools and techniques are discussed.

    The module content is designed to enhance your employability potential in a variety of national and international industrial organisations, or career opportunities in research and development arena. It also equips you with a set of skills to set up your own business in an engineering innovation area should you wish to do so.

    Read full module description

     
  • This module aims to develop an in-depth understanding of some of the fundamental computing technologies that support the engineering product development process. Technologies covered include Computer Aided Design (CAD), Finite Element Modelling and Analysis (FEM/FEA) and Mechanism Design and Simulation tools available within Computer Aided Engineering (CAE) technologies. The module also develops both an understanding of the role of these technologies within Product Data Management (PDM) systems and the role of PDM itself as one of the key enablers for Product Lifecycle Management (PLM).

    Read full module description

     
  • The module covers advanced CAD/CAM techniques in the conceptual design and manufacture and is heavily focussed on the surface modelling and reverse engineering methods prior to manufacture. Also this module will cover rapid manufacturing methods involving mould design and machining tool path optimisation and full machining simulation verification, and machining collision avoidance.

    Read full module description

     
  • This is a core module for MSc courses in the School of Mechanical and Automotive Engineering, forming a capstone experience for students on these courses. The module allows you to research and study an engineering topic which is of personal interest, thus allowing you to demonstrate the mastery of your subject, and develop your ability to analyse and evaluate specific areas that may not have been previously covered in-depth in the course.

    The vigorous structure of the module provides you with an opportunity to identify an industry-based (or research-focused) project area, establish a feasible hypothesis, find creditable solutions, analyse results and offer recommendations. The module enables you to acquire and appraise new knowledge and apply individual judgement to solve new and often complex engineering problems using cutting-edge technology. It also allows you to demonstrate high levels of responsibility, organisational capability and effective communication with others including the supervisor, wider research community and other stake holders. The module also encourages you to recognise, question and deal with the ethical dilemmas that are likely to occur in engineering professional practice and research.

    The project applications can be individually tailored to support your career plan and prepare you to tackle real industrial problems with maturity and rationality hence enhancing your employability potential.

    Read full module description

     

Option modules (choose one)

  • This module explores various management techniques commonly used in industrial companies to improve operation efficiency, overall productivity and competitiveness. You will gain an in-depth understanding in operational issues related to industrial organisations worldwide. In particular the module focuses on how these techniques are to be applied appropriately in the engineering sector. The module addresses global operational issues faced by engineering companies including design and management of products, processes, services and supply chains. Issues such as acquisition, process development, and resource utilisation will also be considered and analysed.

    The content covers both strategic and operational issues including plant location, supply chain management, distribution logistic, customer service process, include production scheduling and control, inventory management, quality control, productivity and performance measurement, materials handling, equipment maintenance policies, etc. The module further aims to identify the resource constraints in its operation through the use of discrete simulation modelling and other software techniques so that a company's overall performance and competitiveness can be improved. The main focus of the module is to provide you with a set of technical skills enabling you to apply your knowledge within an industrial setting, hence enhancing your employability potential.

    Read full module description

     
  • This option module deals with the criteria and practice of sustainable development within engineering industries. To be able to critically assess energy sources as to usage performance of engineering systems, components and processes in order to minimise industrial waste, scrap and pollution through the use of analytical methods; leading to recommendations for the design, specification  and manufacture of environmentally benign products.

    On successful completion of the module, you will be able to:

    • Recognise the importance of national and European Regulations in relation to renewable technologies.
    • Discuss environmentally related technologies and materials that are fundamental in a range of engineering industries including and environmental operations.
    • Discuss environmental issues related to resource provision and consumption necessary for the manufacture of engineered products, and analyse potential for the application of alternative energy sources.
    • Analyse manufactured product design in relation to materials and other resource requirements and apply key concepts to redesign or design products to be recyclable, sustainable with a minimisation of waste.
    • Specify and develop energy efficient and environmentally conscious products.
    • Critically evaluate the life cycle assessment in incorporation of sustainability at the conceptual design stage.

     

    Read full module description

     
  • This module aims to develop your understanding of the main principles of robotic, industrial automation and mechatronics systems. It covers:

    • mechatronics control and its application in automation;
    • the functions of a robot and its embedded systems such as sensors and actuators;
    • how to build dynamic models of robotics systems and design feedback control algorithms;
    • advanced techniques such as fuzzy logic and digital logic design to optimise control in automation processes; and
    • artificial neural networks and adaptive control.
     

You will have the opportunity to study a foreign language, free of charge, during your time at the University as part of the Kingston Language Scheme. Options currently include: Arabic, French, German, Italian, Japanese, Mandarin, Portuguese, Russian and Spanish.

We aim to ensure that all courses and modules advertised are delivered. However in some cases courses and modules may not be offered. For more information about why, and when you can expect to be notified, read our Changes to Academic Provision.

A copy of the regulations governing this course is available here

Details of term dates for this course can be found here

Contact us

Admissions team

*5p per minute from a BT landline. Call charges from other providers may vary.

Location

This course is taught at Roehampton Vale

View Roehampton Vale on our Google Maps

Contact us

Admissions team

*5p per minute from a BT landline. Call charges from other providers may vary.

Location

This course is taught at Roehampton Vale

View Roehampton Vale on our Google Maps
Favourite this course

Did you find what you are looking for?

This field is required.

>

Thank you for your feedback.

Find a course

Course finder

>

Find us on Facebook

Postgraduate study
Site menu