Search our site
Search our site

Advanced Industrial & Manufacturing Systems Masters (MSc)

Mode Duration Attendance Start date
Full time 1 year Delivered in one-week blocks January 2017
September 2017
Part time 2 years Delivered in one-week blocks January 2017
September 2017

Choose Kingston's Advanced Industrial and Manufacturing Systems MSc

In today's uncertain global competition platform and economy, manufacturing and engineering are two of the most important pinnacles for a sustainable growth of any country. Many engineering companies require graduates who can demonstrate not only technological, but also managerial and entrepreneurial skill sets. You will be taught how to select advanced manufacturing processes and materials when making new products, and how to turn innovative ideas into real products quickly, timely and within the constraints of available resources, enhancing your employability.

The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng(Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration.

Key features

  • A balanced syllabus blends aspects of technology and management to create a unique skill set, which is much sought after in industry.
  • Academic teaching is also complemented by expert speakers from industry, keeping you up to date with the challenges and developments in the real world.
  • Many modules are supported by practical workshops using the latest equipment and software. Such practical skills can easily be transferred into the working environment.

What will you study?

You will learn how to analyse complex technical problems and challenges faced by many real-world engineering companies of different sizes. You will also study the operational issues experienced by these companies through real case studies, and how to implement logical solutions under different scenarios. In addition, you will be able to measure the potentials of an engineering company not just through its technological adaptation but also from the entrepreneur viewpoint.

Throughout the course, you will have many hands-on sessions to practise what you have learned in the classroom. These practical skills will be obtained through using specialist software and hardware in engineering functions analysis, CAD/CAM, finite element modelling, operation management, quality analysis, business decision modelling, supply chain management and resources simulation. The project dissertation will allow you to develop a chosen field of knowledge which will complement your career ambition. Teamwork, group presentations, case studies and industrial speakers are other highlights of the course, enhancing your learning experience and employability.


Coursework, group presentation, research project and exam.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Core modules

  • This module is designed to provide you with the research skills and techniques necessary to select and justify a research topic, plan project execution, use various resources to carry out a literature search and successfully complete the project and other module assignments on the course. It also addresses issues related to presentation of technical reports at master level and for the purpose of wider publication in learned media.

    The module further develops your knowledge and skills in business and management, with a particular focus on entrepreneurship and innovation. It supports you in producing proposals for enterprise ideas such as new products or services, or innovations in existing processes or organisations. Concepts of total quality management to enhance quality of products and processes in an industrial setting are presented and application of supporting quality tools and techniques are discussed.

    The module content is designed to enhance your employability potential in a variety of national and international industrial organisations, or career opportunities in research and development arena. It also equips you with a set of skills to set up your own business in an engineering innovation area should you wish to do so.

  • The module covers advanced CAD/CAM techniques in the conceptual design and manufacture and is heavily focussed on the surface modelling and reverse engineering methods prior to manufacture. Also this module will cover rapid manufacturing methods involving mould design and machining tool path optimisation and full machining simulation verification, and machining collision avoidance.

  • This module provides high level view on the design of mechatronic and automation systems. Applications and types of such systems are discussed. Main components of mechatronic design are introduced, including mechanical design through specialised software, sensors and actuators, control design, and software development for real-time implementation. A strong feature of this module is the delivery by the academic staff from the Industrial Control Research Group. Theoretical material is illustrated by practical laboratory sessions on real-time design, using industrial standard, state-of-the-art equipment. A range of transferable skills gained in this module is aimed to help with the work on the final project and extra-curricular activities available within the school.

  • This is a core module for MSc courses in the School of Mechanical and Automotive Engineering, forming a capstone experience for students on these courses. The module allows you to research and study an engineering topic which is of personal interest, thus allowing you to demonstrate the mastery of your subject, and develop your ability to analyse and evaluate specific areas that may not have been previously covered in-depth in the course.

    The vigorous structure of the module provides you with an opportunity to identify an industry-based (or research-focused) project area, establish a feasible hypothesis, find creditable solutions, analyse results and offer recommendations. The module enables you to acquire and appraise new knowledge and apply individual judgement to solve new and often complex engineering problems using cutting-edge technology. It also allows you to demonstrate high levels of responsibility, organisational capability and effective communication with others including the supervisor, wider research community and other stake holders. The module also encourages you to recognise, question and deal with the ethical dilemmas that are likely to occur in engineering professional practice and research.

    The project applications can be individually tailored to support your career plan and prepare you to tackle real industrial problems with maturity and rationality hence enhancing your employability potential.


Option modules (choose one)

  • This module is designed as an advanced option to extend your knowledge of the analytical techniques of stress analysis, plasticity theory and some of the more advanced theories behind finite element analysis.

    The module also investigates properties of a range of modern materials and associated advanced manufacturing processes with a view to broaden your knowledge and skills when selecting a material for a complex engineering application. Use of case studies from extensive research activities of the academic staff is a main feature of this module, introducing you to career opportunities in industrial research and development.

  • This module explores various management techniques commonly used in industrial companies to improve operation efficiency, overall productivity and competitiveness. You will gain an in-depth understanding in operational issues related to industrial organisations worldwide. In particular the module focuses on how these techniques are to be applied appropriately in the engineering sector. The module addresses global operational issues faced by engineering companies including design and management of products, processes, services and supply chains. Issues such as acquisition, process development, and resource utilisation will also be considered and analysed.

    The content covers both strategic and operational issues including plant location, supply chain management, distribution logistic, customer service process, include production scheduling and control, inventory management, quality control, productivity and performance measurement, materials handling, equipment maintenance policies, etc. The module further aims to identify the resource constraints in its operation through the use of discrete simulation modelling and other software techniques so that a company's overall performance and competitiveness can be improved. The main focus of the module is to provide you with a set of technical skills enabling you to apply your knowledge within an industrial setting, hence enhancing your employability potential.

  • This module is designed to demonstrate how advanced internet technology can be applied in engineering and business sectors. The module is skill-focused and provides a comprehensive learning platform for you to master not only the knowledge of the essential aspects of information systems and e-commerce, but also to design and to build a live website populated with product engineering data. The end product will facilitate interactive engineering and product design activities contributed by engineers in different locations across the world via the internet. The well-balanced theoretical and practical content offered in this module allows you to truly appreciate the benefits of adequate IT deployment in the engineering sector, and to apply what you have learnt in the lecture through developing a realistic web server with specific engineering design functions. As a result of this sought-after skillset, your employability potential in a wide spectrum of national and international industrial organisations will be greatly enhanced.

  • This option module deals with the criteria and practice of sustainable development within engineering industries. To be able to critically assess energy sources as to usage performance of engineering systems, components and processes in order to minimise industrial waste, scrap and pollution through the use of analytical methods; leading to recommendations for the design, specification  and manufacture of environmentally benign products.

    On successful completion of the module, you will be able to:

    • Recognise the importance of national and European Regulations in relation to renewable technologies.
    • Discuss environmentally related technologies and materials that are fundamental in a range of engineering industries including and environmental operations.
    • Discuss environmental issues related to resource provision and consumption necessary for the manufacture of engineered products, and analyse potential for the application of alternative energy sources.
    • Analyse manufactured product design in relation to materials and other resource requirements and apply key concepts to redesign or design products to be recyclable, sustainable with a minimisation of waste.
    • Specify and develop energy efficient and environmentally conscious products.
    • Critically evaluate the life cycle assessment in incorporation of sustainability at the conceptual design stage.



You will have the opportunity to study a foreign language, free of charge, during your time at the University as part of the Kingston Language Scheme. Options currently include: Arabic, French, German, Italian, Japanese, Mandarin, Portuguese, Russian and Spanish.

Contact us

Admissions team


This course is taught at Roehampton Vale

View Roehampton Vale on our Google Maps

Contact us

Admissions team


This course is taught at Roehampton Vale

View Roehampton Vale on our Google Maps
Favourite this course

Find a course

Course finder


Find us on Facebook

Postgraduate study
Site menu