Electronic Products Engineering MEng/BEng (Hons)

Why choose this course?

Immerse yourself in the dynamic world of Electronic Products Engineering, where the fusion of Artificial Intelligence creates ground-breaking opportunities to address society's most pressing challenges. As an Electronic Products Engineering student, you will gain the expertise and skills required to excel in the entire electronic product development cycle, making a meaningful impact on the world around you.

Our hand-on course equips you with the Future Skills needed to thrive in the rapidly evolving technological landscape. Discover how to harness the power of artificial intelligence and other state-of-the-art technologies to design and develop intelligent electronic systems, shaping the future with innovative solutions that have a positive societal impact. The course opens up a wealth of career paths, positioning you at the forefront of the Fourth Industrial Revolution to capture the exciting opportunities that this rapidly evolving landscape presents.

Embrace the UN Sustainable Development Goals as a guiding force for a sustainable future for all. In this course, you will learn how to integrate these goals into your professional endeavours, actively contributing to their achievement. Our diverse and inclusive curriculum, crafted to meet the needs of varied communities, is delivered by academics from diverse backgrounds. This unique learning experience allows students to engage with people from different cultures and perspectives, enriching their understanding and broadening their horizons.

Qualification Attendance UCAS code Year of entry
MEng 4 years full time H693 2024
MEng 5 years full time including sandwich year H694 2024
BEng (Hons) 3 years full time H690 2024
BEng (Hons) 4 years full time including sandwich year H691 2024
Location Roehampton Vale

Reasons to choose Kingston University

  • Engage in a hands-on and project-based learning experience that builds a solid foundation in the core principles of electronic products engineering, equipping you with the knowledge and skills sought after by the fast-paced industrial, commercial and domestic sectors.
  • Apply cutting-edge techniques to tackle real-world electronic product development challenges, gaining invaluable practical experience while deepening your understanding of the latest industry trends and innovations.
  • Dive into a wide range of applications, encompassing artificial intelligence, communication systems, control systems, power electronics, embedded systems, signal processing, robotics, instrumentation, electric vehicles and renewable energy, throughout the electronic product development cycle.
  • Collaborate with fellow students from diverse cultural, social and professional backgrounds in team-based projects, fostering a deeper appreciation for diversity, honing your ability to navigate varied perspectives, and nurturing an inclusive mindset vital for future engineering professionals.

What you will study

Year 1

Year 2

Year 3

Year 4 - MEng only

Students will establish a strong foundation in mathematics, physics circuits, and programming, enabling them to understand the fundamental principles of electronic products engineering.

Modules

Navigate for the Professional Engineer

15 credits

In this module, we prioritise the development of professional and personal skills, recognising their crucial role in your overall growth. These skills are seamlessly integrated into our curriculum, providing you with authentic opportunities to apply them.

Additionally, we delve into employability skills within the Personal Tutorial System (PTS), encouraging you to explore how these skills can be honed both horizontally across your Level 4 modules and vertically as you advance towards graduation. This will be supported through active engagement in the KU Navigate Programme enabling students to understand and begin to develop a design thinking approach to Future Skills development. Through practical application and thoughtful reflection, you'll have the chance to develop a well-rounded skill set that aligns with the demands of the professional world.

Engineering Mathematics

15 credits

The aim of this module is to provide the basic mathematical skills for engineering students that are essential for effective understanding of engineering subjects. The topics introduced will serve as basic tools for studies in many engineering subjects. Students will be empowered to understand and be able to use the language and methods of mathematics in the description, analysis and design of engineering systems. The emphasis is on using mathematical tools to solve engineering problems.

Electrical Engineering Principles

15 credits

This module offers a comprehensive approach to the study of electrical circuits, combining both theoretical knowledge and practical application. In the laboratory sessions, you will work on simple circuits containing combinations of resistors, capacitors and inductors. The module also covers the topic of transformers, revisiting induction, and concludes with the theoretical aspects of generators and motors, along with machines.

Overall, this module provides a balanced blend of theory and hands-on practice, giving you a solid understanding of electrical circuits and their practical applications.

Programming for Engineers

15 credits

This module will introduce you to scripting in one of the most popular programming languages in industry, which is widely used for data processing, automation of tasks and more recently for machine learning (ML) and artificial intelligence (AI) specifically in the engineering industry. 

The module has been designed to cover all the fundamentals of programming. It provides a valuable transferrable skill set that can be fed forward to provide the essential skills needed for scripting in other computer languages in further modules. It also provides the crucial foundations for you to investigate applications involving both ML and AI as you progress through the course.

Electronic Circuits and Systems

30 credits

Electronic circuit and system fundamentals play a vital role across many engineering disciplines. This module will provide you with a firm understanding of the principles of electronic circuits and systems including digital electronics. You will be introduced to the fundamental electronic components and their application in the design of electronic circuits and systems. You will also learn to analyse various types of electronic circuits and systems. This module encourages the use of simulation tools for the design and analysis of electronic circuits and systems to enhance analytical as well as employability skills.

Microcontrollers and Interface Electronics

30 credits

This module will introduce you to both the operation and functionality of microcontrollers and the techniques used to interface them to sensors and transducers, with the aim to monitor and control a closed loop system. Interface circuitry, operation of sensors and actuator control is covered in depth, along with the inclusion of devices to extend the number of analogue and digital port lines on a microcontroller.

The information gained on this module can be fed forward to other modules; it will also be invaluable in industry when undertaking a job after graduating that involves mechatronics and embedded system design.

Building upon the fundamental principles of electronic products engineering, students will delve deeper into areas such as electronic devices, digital systems and embedded systems. They will gain knowledge in hardware design, firmware development and system integration. 

Modules

Numerical Analysis and Computing

15 credits

This module will equip you with fundamental mathematical skills that are crucial for comprehending engineering subjects effectively. The topics covered in the module will serve as fundamental tools for studying various engineering subjects. You will be empowered to comprehend and use the language and techniques of mathematics in describing, analysing, and designing engineering systems. The primary focus is on using mathematical tools to resolve engineering problems, especially on mechanical systems, robotics, control systems, and signal processing.

Instrumentation and Measurement

15 credits

The module will provide you with theoretical knowledge to understand the concepts and language relating to the use of instrumentation for measurement, as well as the practical skills to use instrumentation for a range of measurement tasks.

The module also familiarises you with some common sensors used for temperature and pressure measurement, the most common measurands, and techniques for measuring sound level, speed, position, flow rate, stress and strain. 

The important area of uncertainty in measurements is also covered, as well as traceability of measurement back to the national standards, noting the significant legal implications of this. These skills and knowledge will prepare you to be broadly industry-ready, significantly enhancing your employability prospects.

Exploring Engineering Project Management

15 credits

This core module is essential for Level 5 engineering students. It focuses on developing professional skills and bridging the gap between Future Skills development in Level 4 and practical application in Level 6. It explores engineering project design and management, emphasising constraints such as quality, time, risk, and sustainability.

On this module, you will develop teamwork, critical thinking, communication, time management, and organisational skills. The module includes an interdisciplinary design thinking project to address a sustainability challenge, contextualising subject-specific knowledge. The integrated Level 5 Personal Tutorial System (PTS) facilitates discipline-focused discussions, critical thinking, and employability reflections.

Introduction to Artificial Intelligence

15 credits

This module for engineering students provides a broad overview of artificial intelligence, including current state and future potential. You will be introduced to the key concepts and techniques used in artificial intelligence, such as machine learning and reinforcement learning. You will be taught how to apply these techniques to solve real-world problems in the engineering fields, such as predictive maintenance, fault diagnosis and optimisation.

The module includes practical workshops and projects to enable you to develop your programming and data analysis skills and to apply artificial intelligence techniques to real-world problems. The module also encourages critical thinking about the social and ethical implications of artificial intelligence, and aims to develop responsible and ethical approaches to AI development and deployment.

Systems Engineering

30 credits

The module is designed to provide each student with an understanding of the principles of system engineering and the skills to apply system engineering techniques. As most engineers work on complex, interdisciplinary project-based tasks, these skills and knowledge form part of the future skills requirements for engineers to be industry-ready, hence enhancing their employability prospects.

You will learn about the industry-standard use of systems principles applied to engineering projects, and how projects are structured within these principles. For example, you will learn about Requirements Management, Functional Analysis, Work Breakdown Structures, Validation and Verification Methods, Trade Studies, Project Risk Management and other related topics.

Computer Aided Electronic Design

30 credits

This course introduces you to the overall process of computer-aided design of electronic equipment and systems. The electronic equipment development and life cycle will be examined together with Printed Circuit Board (PCB) fabrication and surface mount technologies. The module uses Altium Designer to provide schematic entry, schematic library component management, electrical rule check and netlist generation. In the circuit analysis and simulation, Board level design will be examined together with PCB design rules, computer aided board design, mechanical design, preparation of manufacturing documentation.

Students will explore advanced topics including analogue and mixed-signal design, communication protocols and microcontroller applications. They will develop skills in product development, testing and quality assurance. MEng students will continue to deepen their knowledge in areas such as computer-aided design and electronic product design. 

Modules

Applied Business Management

15 credits

This module focuses on students' ability to apply and demonstrate their developing professional skills in their chosen field, while also fostering a broad understanding of the business environment in which professionals operate. It will enhance students' technical, management, and interpersonal competencies within a team setting, preparing them for employment and entrepreneurial endeavours.

As part of this module, students will actively engage in Kingston University's Bright Ideas competition, collaborating as a team to develop a business concept of their choice. This will involve interacting with external stakeholders beyond the university setting.

Furthermore, students will be encouraged to connect with professional and learning communities outside the University, reflecting on these interactions. This may involve participation in co-curricular events, such as subject-specific and career development sessions, networking opportunities facilitated by professional bodies, exploration of pathways to professional chartership or membership, leveraging interactions with professionals for their final-year research project, and recognizing the mutual benefits of these interactions.

Through these activities, students will gain practical experience, expand their professional networks, and cultivate a deeper understanding of their future career pathways.

Advanced Microcontrollers

15 credits

This module is designed to develop, refine and apply both the ideas introduced, and proficiency gained in previous level 4 and 5 modules that involved electronics, control and software. It enables students to identify and develop skills in the solution of problems relating to the creation of mechatronic systems and robotic automation. Students are introduced to the techniques and knowledge required to design and embed microcontrollers, linked to a range of sensors and actuators, into a system to sense, process, control and display real world events, similar to those encountered within an industrial engineering, or commercial environment. The module covers topics such as advanced programming, state-of-the-art sensors and actuators, data logging, microcontroller selection and use of commercial shields (expansion boards) as building blocks to extend system functionality using a modular approach to the design process.

Electronic Prototyping

15 credits

This module is designed to provide third-year electronic product engineering students with practical and project-based experience in manufacturing, testing, and product development. The module covers a range of topics, including electronic component selection, circuit design, printed circuit board (PCB) layout, and prototyping techniques such as breadboarding. The emphasis is on practical skills and students will spend a significant portion of the module engaged in hands-on activities, including the design, construction and testing of their own electronic products. In addition, the module includes a focus on product development, with an emphasis on bringing electronic prototypes to market. Students will learn about product design, market research, and intellectual property considerations. They will also explore manufacturing techniques, including mass production and rapid prototyping methods such as 3D printing.

Advanced Devices and Electronic Systems Design

15 credits

This module acts as a crucial link between level 4 and 5 modules in electronics, design, and analysis. It aims to develop proficiency in the optimal process of creating complete electronics systems, considering factors like legislation, environmental impact, reliability, and manufacturing. Topics covered include advanced devices such as drones, solar panels, buck converters for computers, battery management systems, and more. Additionally, the module explores electronic systems design with a focus on modularity, safety, legislation compliance, environmental impact, and the inclusion of necessary technical documents. By engaging with these topics, students acquire the knowledge and skills needed to design efficient and sustainable electronics systems in line with emerging technologies and industry demands.

Deep Learning for Wireless Networks and Communications

30 credits

This module aims to provide students with an in-depth understanding of the fundamental principles of wireless communication and networks. In addition, it will equip the students with the knowledge of the application of deep learning techniques to improve performance of wireless communication networks. The module will cover fundamental concepts of wireless networks, communication, and how deep learning techniques can be applied to optimise wireless communication networks. Students will also explore current research and industry developments related to the deployment of deep learning in wireless networks and communication. This technical as well as research-informed module will enhance students' analytical and employability skills. Additionally, it provides students the opportunity to enhance their research, interpersonal and presentation skills.

Individual Project

30 credits

The individual project module forms a capstone experience for the courses within the School, allowing the students to research and study in detail a topic in their chosen field of study which is of personal interest. Professionally the project module allows the students, to show high levels of responsibility and organisational capability (through arranging meetings with supervisors, setting project goals and meeting appropriate deadlines) as well as demonstrating effective communication with others. Furthermore, the module encourages the students to recognise, question and deal with the ethical dilemmas that are likely to occur in research and professional practice. Furthermore, this module provides the students with an opportunity to further enhance their independence and employability skills which industry is looking for in perspective graduates, especially those seeking professional recognition as a Chartered Engineer.

The final year of the MEng course focuses on synthesising knowledge and skills acquired throughout the programme. Students will engage in project work, advanced circuit design and specialisation modules such as IoT applications, consumer electronics or product innovation. They will gain practical experience in designing and optimising electronic products for real-world applications.

Modules

Engineering and Business Resource Management

15 credits

This module focuses on using advanced management techniques, including simulation and business modelling, in an engineering company to maximise the utilisation of its finite resources in order to become more competitive. These techniques include discrete event simulation, business modelling, linear programming, and human resources optimisation, with the main aim to improve the company's overall operational efficiency, competitiveness and profit.

The intended module topics covers both local and global horizons of running a successful business by teaching companies they may benefit from using simulation techniques in streamlining their operations and resource deployment through a benchmarking process. Through extensive hands-on practical, you will learn how to use sophisticated simulation software to improve resources utilisation in different business scenarios.

Throughout the module, you will learn not only the theoretical techniques of management skills, but also to apply the knowledge you gain and evaluate the results through developing complex business simulation models, therefore enhancing your employability potentials.

Integrated Circuit Design

15 credits

This module introduces design and layout of VLSI circuits and systems making use of appropriate computer-aided design (CAD) tools. The primary objective of this module is to equip students with a comprehensive understanding of CMOS cell operation and the ability to design basic analogue and digital functions commonly used in ICs, as well as mixed-signal systems. The module places special emphasis on the importance of designing both analogue and digital functions. Students will be introduced to various CAD tools commonly used in industry for designing and simulating CMOS circuits, such as Cadence Virtuoso, Spectre, Synopsys Design Compiler. Students will have the opportunity to use these tools in practical design projects to gain hands-on experience in designing and simulating CMOS circuits using industry-standard tools.

Advanced Computer Aided Design

15 credits

This module will give students a detailed insight into the use of CAD Systems. An introduction to the engineering design process and the role which CAD systems play in its effective implementation will be given. A review of CAD systems is given as well as the strategic importance of enterprise-wide product modelling will be introduced. Feature-Based Design, Assembly data management, secure product data/information exchange/storage/authorising mechanisms and relevant scenarios in product development will be covered as a part of this module. The appropriate use of non-dimensional modelling scenarios will be covered in addition to simple parametric relationship aspects.

Product Design Lifecycle Analysis

30 credits

The module is structured in a way to develop an understanding of the different stages in the lifecycle of a designed product, for example, from inception, through design and manufacturing, then into service and finally retirement.

This module aims to help students develop an understanding of these stages in a product lifecycle and processes need to be undertaken in these stages and their interrelationships. This module will also aim to help students develop a fundamental understanding of product lifecycle from a business and organisational perspective. Case studies are used to illustrate the application and relevance of taught concepts.

Students will be asked to work in a team to perform a comprehensive product lifecycle analysis, using the knowledge learnt in this module as well as applying the knowledge acquired in pre-requisite modules. This will enable students to develop a set of kills to enhance their employability prospect in this demanding area. 

Core factual materials are provided via Canvas with keynote lectures.

MEng Team Project

30 credits

The MEng Team Project is a module which runs throughout the final year of all MEng programmes in the School of Engineering. It provides a capstone element to the course by providing an opportunity for students to work on a major engineering design problem in a team in a way which closely parallels a real-world project. The groups are assigned to a particular project which has an outline project description, specification, or customer requirements provided by the teaching team. It is group's job to develop the specification in detail, to convert it to a technical specification and then carry out the tasks necessary to complete the project. This module provides an opportunity for students to further develop academic skills delivered earlier in the programme. In order to successfully complete the module, students must establish a plan and work schedule, perform the technical tasks necessary to fulfil the plan, monitor progress, manage the team activities, hold and minute formal team design meetings, and resolve any problems that arise. The module is delivered primarily through weekly formal design meetings and regular informal meetings.

Future Skills

Knowledge to give you the edge

Embedded within every course curriculum and throughout the whole Kingston experience, Future Skills will play a role in shaping you to become a future-proof graduate, providing you with the skills most valued by employers such as problem-solving, digital competency, and adaptability.

As you progress through your degree, you'll learn to navigate, explore and apply these graduate skills, learning to demonstrate and articulate to employers how future skills give you the edge.

At Kingston University, we're not just keeping up with change, we're creating it.

A female engineering student, in the engineering lab.

Entry requirements

Typical offer 2025

UCAS tariff points: 112-128 for BEng (Hons); 128-144 for MEng.

  • BEng: 112-128 UCAS points from three A-levels or equivalent Level 3 qualifications. A-levels to include Mathematics and a science subject (Physics, Chemistry, Computer Science /Computing, Design and Technology or Electronics). Alternatively, BTEC National Extended Diploma in Engineering or related subject such as Aerospace/Aeronautical/Electrical/Electronic/Manufacturing and Mechanical Engineering will be considered (grades DMM).
  • MEng: 128-144 UCAS points from three A-levels or equivalent Level 3 qualifications. A-levels to include Mathematics and two science subjects (Physics, Further Mathematics, Chemistry, Computer Science /Computing, Design and Technology, Electronics). Alternatively, BTEC National Extended Diploma in Engineering or related subject such as Aerospace / Aeronautical / Electrical / Electronic / Manufacturing and Mechanical Engineering will be considered (grades DDM).

Candidates are normally required to hold five GCSE subjects at grade C/4 or above, including Mathematics and English Language.

Typical offer 2024

UCAS tariff points: 112-128 for BEng (Hons); 128-144 for MEng.

  • BEng: 112-128 UCAS points from three A-levels or equivalent Level 3 qualifications. A-levels to include Mathematics and a Science subject (Physics, Chemistry, Computer Science /Computing, Design and Technology or Electronics). Alternatively, BTEC Extended Diploma in Engineering or related subject such as Aerospace/Aeronautical/Electrical/Electronic/Manufacturing and Mechanical Engineering will be considered (grades DMM).
  • MEng: 128-144 UCAS points from three A-levels or equivalent Level 3 qualifications. A-levels to include Mathematics and two Science subjects (Physics, Further Mathematics, Chemistry, Computer Science /Computing, Design and Technology, Electronics). Alternatively, BTEC Extended Diploma in Engineering or related subject such as Aerospace/Aeronautical/Electrical/Electronic/Manufacturing and Mechanical Engineering will be considered (grades DDM).

Candidates are normally required to hold five GCSE subjects at grade C/4 or above, including Mathematics and English Language. We will consider a range of alternative Level 3 qualifications such as an Access Course in a relevant Engineering subject which has been passed with 112 UCAS points (BEng only). Applications from those who have undertaken an Engineering foundation year will also be considered.

Alternative routes

We will consider a range of alternative Level 3 qualifications such as an Access Course in a relevant Engineering subject which has been passed with all Maths and Physics units at Level 3 (112 UCAS points for BEng) or 128 UCAS points for MEng).

Applications from those that have undertaken an Engineering foundation year will also be considered.

International

We welcome applications from International Applicants. View our standard entry requirements from your country.

All non-UK applicants must meet our English language requirements. For this course it is Academic IELTS of 6.0, with no element below 5.5.

Country-specific information

You will find more information on country specific entry requirements in the International section of our website.

Find your country:

Typical offer and UCAS points explained

Like most universities, we use the UCAS Tariff point system for our course entry requirements.

Find out more about UCAS Tariff points and see how A-level, AS level, BTEC Diploma and T-level qualifications translate to the points system.

Teaching and assessment

Guided independent study (self-managed time)

When not attending timetabled sessions, you will be expected to continue learning independently through self-study. This typically will involve reading journal articles and books, working on individual and group projects, undertaking preparing coursework assignments and presentations, and preparing for final assignments. Your independent learning is supported by a range of excellent facilities including online resources, the library and CANVAS, the online virtual learning platform.

Academic support

Our academic support team here at Kingston University provides help in a range of areas.

Dedicated personal tutor

When you arrive, we'll introduce you to your personal tutor. This is the member of academic staff who will provide academic guidance, be a support throughout your time at Kingston and show you how to make the best use of all the help and resources that we offer at Kingston University.

Feedback summary

We aim to provide feedback on assessments within 20 working days.

Who teaches this course?

The course team comprises highly-experienced staff members with extensive knowledge in both research and industry. Our dedicated academic staff members actively engage in cutting-edge research and maintain strong connections within their respective disciplines. This ensures the curriculum remains up-to-date, relevant, and informed by the latest industry developments.

As a student on this course, you will have the opportunity to learn from these world-class academics, benefiting from their wealth of experience and expertise. Our supportive community includes not only accomplished academics but also skilled technicians and attentive administrative staff. All are fully committed to helping you succeed in your educational journey.

Students' learning experience is enhanced through the participation in competitions such as the IMechE Formula Student project, the IMechE Design Challenge competitions for Years 1 and 2 students, the Isle of Man TT-Bike race and the Caterham Academy Championship.

Postgraduate students may run or assist in lab sessions and may also contribute to the teaching of seminars under the supervision of the module leader.

Facilities

There is a wide range of facilities for practical work at our Roehampton Vale campus, where this course is based.

Our applied approach to teaching is supported by dedicated laboratories, including state-of-the-art facilities for rapid prototyping and manufacturing, a fully equipped materials laboratory, and a modern electronics and robotics lab. Our labs have recently been enhanced with the addition of robot and electronic equipment, providing students with access to the latest technologies and tools.

Our applied approach to teaching is supported by dedicated laboratories, including state-of-the-art facilities for rapid prototyping and manufacturing, a fully equipped materials laboratory, and a modern electronics and robotics lab. Our labs have recently been enhanced with the addition of robot and electronic equipment, providing students with access to the latest technologies and tools.

You will have access to a modern environment with the latest technology and industry-standard equipment, including:

  • 3D design studio and workshop
  • mechanical engineering workshop
  • rolling roads
  • automotive testing facilities
  • a Lotus Exige
  • cars and motorcycles built by engineering students.

The recently enlarged library at Roehampton Vale provides collections of specialist engineering books and journals.

The £4 million Hawker Wing provides three floors of extra space for students and staff at Roehampton Vale, including improved learning and teaching facilities.

Three engineering students working on a Formula Student car.

Course fees and funding

2024/25 fees for this course

The tuition fee you pay depends on whether you are assessed as a 'Home' (UK), 'Islands' or 'International' student. In 2024/25 the fees for this course are:

 Fee category Amount
Home (UK students) £9,250*
International Year 1 (2024/25): £17,800
Year 2 (2025/26): £18,500
Year 3 (2026/27): £19,200
Year 4 (2027/28): £20,100

For courses with a sandwich year, the fee for the placement year can be viewed on the undergraduate fees table. The placement fee published is for the relevant academic year stated in the table. This fee is subject to annual increases but will not increase by more than the fee caps as prescribed by the Office for Students or such other replacing body.

* The fees shown above apply for Year 1 of the degree from 2024/25 onwards (fees may rise in line with inflation for future academic years). For full time programmes of a duration of more than one academic year, the published fee is an annual fee, payable each year, for the duration of the programme. Your annual tuition fees cover your first attempt at all of the modules necessary to complete that academic year. A re-study of any modules will incur additional charges calculated by the number of credits. Home tuition fees may be subject to annual increases but will not increase by more than the fee caps as prescribed by the Office for Students or such other replacing body. Full time taught International fees are subject to an annual increase and are published in advance for the full duration of the programme.

Eligible UK students can apply to the Government for a tuition loan, which is paid direct to the University. This has a low interest-rate which is charged from the time the first part of the loan is paid to the University until you have repaid it.

Note for EU students: UK withdrawal from the European Union

The Government has recently announced that new students from the European Union and Swiss Nationals starting their course after August 2021 will no longer be eligible for a student loan in England for Undergraduate or Postgraduate studies from the 2021/22 academic year. This decision only applies to new EU students starting after 2021/22. If you are an existing/continuing EU student, you will continue to be funded until you graduate or withdraw from your course.

Need to know more?

Our undergraduate fees and funding section provides information and advice on money matters.

Work placement year

How you can work in industry during your course

Why take a placement? Work placements have many benefits:

  • Providing work experience that is relevant to your course and future career
  • Improving your chances of graduating with a higher grade degree
  • Enhancing your CV
  • Can lead to a graduate job
  • Can enable you to earn a year's salary whilst studying (the vast majority of placements are paid)
  • Can help you select your final-year project. 

"To be successful, tomorrow's leaders will need to be far more rounded individuals than ever before. They will collaborate in pursuit of shared goals. They will guide, challenge and support...They will have an appetite for change and a hunger for continuous improvement, and they will have an ethos of learning and development..." 
Jeremy Darroch, Former Chief Executive, Sky  

"Doing a placement year effectively gives you one foot in the door of a future job and to stand out from the crowd... as well as enhancing my CV... and future interviews. It's a great motivator to be successful in my studies as it only serves to open even more doors and gain more skills." 
Placement student at Jagex Games Studios Ltd

  • 81% of placement students and 34% of non-placement students got a first or 2.1 (Faculty of Computing, Information Systems and Mathematics, 2008). 
  • 100% of placement students during 2008 recommend doing a placement (Faculty of Computing, Information Systems and Mathematics, 2008). 
  • Many employers offer a graduate job to their successful placement students. 

There is a lot of support available for students looking to secure a placement (e.g. a jobs board with placement vacancies, help with writing CVs and mock interviews). Getting a placement and passing the placement year are ultimately the student's responsibility. 

For further information please contact the Placements Team by telephone 020 8417 2969 or email secplace@kingston.ac.uk

Examples of placements  

Placements can be with large multinational companies, international companies, local companies and small start-ups; offering a diverse range of posts. Here are some examples of employers and roles: 

Construction-based placement employers 

Construction-based placement roles 

RG Group 
Multiplex 
Costain 
Willmott Dixon  
Fluor 

Assistant site manager 
Assistant trades package manager 
Assistant logistics manager 
Health and safety officer 
Construction engineer

Science-based placement employers 

Science-based placement roles 

Reckitt and Benckiser 
GSK 
Drug Control Centre 
Minton Treharne and Davies Ltd  
Various local and international hospitals 

Bioanalytical sciences 
Lab assistant 
Pharmacy assistant 
Sports coach 

Engineering-based placement employers 

Engineering-based placement roles 

Airbus 
BAM Nuttall 
Nissan 
Bosch 
Wozair

Analysis of aircraft structure 
Construction resources specialist 
Site engineer assistant

Computing and IS based placement employers 

Computing and IS based placement roles 

Disney 
Sony Interactive Entertainment Europe 
IBM 
McKinsey 
Intel

Database co-ordinator 
Software developer 
Website developer 
App developer

Mathematics-based placement employers 

Mathematics-based placement roles 

Lloyds Banking Group 
AXA 
Allianz 
PAU Education, Spain

Analyst 
Investment solutions 
Research analyst 
Accounts assistant

Key information set

The scrolling banner(s) below display some key factual data about this course (including different course combinations or delivery modes of this course where relevant).

Course changes and regulations

The information on this page reflects the currently intended course structure and module details. To improve your student experience and the quality of your degree, we may review and change the material information of this course. Course changes explained.

Programme Specifications for the course are published ahead of each academic year.

Regulations governing this course can be found on our website.