Aircraft Engineering FdEng

Why choose this course?

This course is a progression programme and is specifically designed to help meet the growing need for skilled aircraft maintenance engineers. As part of the programme, you will gain the knowledge requirements for the EASA Part 66 B1.1 licence. You will also receive practical hand skills training in the purpose-built basic workshop facilities.

This course is designed to produce licensed aircraft maintenance engineers with the capacity to progress onto the BEng (Hons) top-up course, obtain an honours degree and become aircraft maintenance managers of the future.

The course introduces students to aircraft engineering hand and maintenance skills and provides them with opportunities to put the skills into practice. It also introduces the study skills necessary for successful completion of the course in the first year and develops and expands these skills in the second year to prepare the students for progression to the top-up.

This course is taught at Exeter College and awarded by Kingston University.

Where taught Attendance UCAS code Year of entry
Exeter college 2 years full time 2H60 2022
2023
Location Exeter college

Reasons to choose Kingston University

  • This course provides students with the professional knowledge and skills that will enable them to manage their own and encourage them to be proactive in their personal and professional development.
  • The course introduces students to aircraft engineering hand and maintenance skills and provides them with opportunities to put the skills into practice.
  • The course gives you the skills and knowledge to progress onto the Aircraft Engineering Top-up course.

What you will study

The course is operated in accordance with the KU Undergraduate Regulations and modules are compulsory; there are no optional modules available. To be awarded an FdEng Aircraft Engineering, students must pass all 240 credits. A student is eligible for the award of a Certificate of Higher Education (CertHE) provided they successfully complete at least 120 credits of the programme at level 4 or above.

Please note that this is an indicative list of modules and is not intended as a definitive list as these could change before your year of entry.

You can contact the Exeter College liaison officer JeffWatson@exe-coll.ac.uk for further details about Exeter College and the course.

Year 1

Year 2

Core modules

Mathematics and Physics for Practitioner Engineers

30 credits

This module covers all of the topics in the EASA part-66 Mathematics and Physics syllabuses and provides knowledge and understanding sufficient for you to take the associated EASA category B licence examinations that must be passed in order to become an aircraft maintenance engineer. It also extends the mathematics knowledge to a level sufficient to underpin key engineering principles and prepare students for the mathematics in the level 6 modules of the programme and further study. To become a design engineer you would need to complete some additional mathematics and science study at level 5.

Electrical Engineering Fundamentals

30 credits

This module comprises both theory and practical. The theory is delivered in a series of lectures and the practical involves you completing a series of laboratory sessions designed to reinforce the knowledge gained in the lectures.

The module starts by looking at electrical charge and how electricity is created, before moving on to look at passive components such as resistors, capacitors and inductors and how they behave in simple direct current (d.c.) circuits. The study of inductors leads nicely into the topic of magnetism and then onto d.c. generators and motors which starts by exploring the fundamental principles of machines before moving on to look at various basic types.

The second part of the module focuses on alternating current (a.c.). Firstly passive components are revisited, this time in basic a.c. circuits. The relationship between: resistance, reactance and impedance; voltage, current and impedance; and reactive, true and apparent power are examined in the class and tutorial sessions whilst simple circuits containing combinations of resistors, capacitors and inductors are explored in the laboratory. Induction is then revisited for transformers before the final section which covers the theoretical aspects of a.c. generators and motors before looking at typical aircraft a.c. machines.

Aerodynamics and Aircraft Electronic and Digital Systems

30 credits

This module will initially establish the need for a standard atmosphere (ISA) and describe the properties of the atmosphere as applicable to aerodynamics. The module will investigate the airflow around a body and the generation of lift and drag.  Relevant terminology and formulae will be introduced and calculations performed.  The module will go on to discuss lift augmentation and stability; specifying design features affecting these. High speed flight is then discussed, including design features associated with critical Mach number. The module will conclude with a look at the characteristics of aerofoils at all speeds of flight.

This double module is a combination of electronics, digital techniques and aircraft digital systems. The electronics section starts by looking at the building block of semiconductor components: the P-N junction, this is followed by a look at the characteristics, uses, and basic testing of diodes and transistors. Basic logic gates are then introduced, and combinational and sequential logic circuits examined. Op amps are studied and basic AtoD and DtoA conversion techniques investigated. The section concludes with look at the transducers and synchronous data transmission systems found on aircraft. In digital techniques, computer terminology and the basic layout and operation of computers is studied before looking at the use of computer technology in aircraft.  Aircraft specific databus systems and displays techniques are also studied prior to moving onto the final section of the module: digital systems.  The last section involves investigating the layout, operation and built-in-test equipment (BITE) of a selection of electronic and digital aircraft systems including: Electronic Flight Instrument systems (EFIS), Electronic Centralised Aircraft Monitor system (ECAM), Engine Indicating and Crew Alerting System (EICAS), Fly-by-Wire (FBW), Inertial Reference Systems (IRS), and the Flight Management System (FMS).

Aircraft Practical and HE Study Skills

30 credits

This module introduces and provides an opportunity for students to develop the academic skills needed to successfully complete a Higher Education (HE) programme and the basic practical skills needed to become an aircraft maintenance engineer.

The academic element of the module will cover basic research techniques, report writing, referencing, use of IT, maintaining digital records, the fundamentals of working in teams, maintaining a study journal, understanding and using feedback, reflection and personal development through a series of scheduled learning sessions that will comprise a mixture of presentation, lecture, discussion, workshop and tutorial. Students will maintain a study journal a portfolio of evidence that will be used for both formative and summative assessment purposes. The majority of the material needed for these two documents will be derived from work completed for the other modules in the year.

The aircraft element of the module will give students an opportunity to develop basic hand and aircraft maintenance skills. The module is not intended to turn the student into skilled experts; rather it is designed to provide a thorough introduction and solid grounding for further training, practice and development. The hand-skills experience will include: an introduction to the tools and materials that will be used, reading basic engineering drawings, marking out, cutting, filing, drilling, and thread cutting etc. When completing the initial tasks, students will be closely supported and guided; however the level of guidance will decrease as the module progresses and the tolerances to which the student work will be expected to increase. The maintenance skills will include: using maintenance manuals, following procedures, completing documentation and fundamental maintenance activities such as: identifying parts, wire-locking, panel removal and refitment and torque loading and assembly and disassembly techniques. Assessment of this element of the module will be through practical exercises and students will be expected to display maturity, integrity, good work practices and have a responsible attitude towards safety at all time throughout the module.

Core modules

Aircraft Material, Hardware and Maintenance

30 credits

This module comprises two parts; the first looks at aircraft materials and hardware and the second covers the theoretical aspects of aircraft maintenance practices. The practical work associated with this module takes place in other modules in the programme.

Part one of this module starts by exploring the characteristics, properties, applications and typical heat treatments of aircraft ferrous and non-ferrous metals before looking at the properties, characteristics and how to repair typical aircraft composite and non-metallic materials. The content of this element extends beyond the EASA syllabus and there will be a greater emphasis on the mechanical and physical characteristics of material, their time dependent behaviour, behaviour under various loading conditions and features related to the service environment. The module also looks at the selection and application of different types of materials in engineering applications. Where appropriate, state-of-the-art problems will be discussed to illustrate the structure-property relationship in materials. The final topic of this part covers aircraft hardware, here the properties, characteristics, uses and identification of fasteners, pipes, bearings, transmission systems, flying controls, and aircraft electrical cables and connectors are examined.

Part two provides students with the knowledge required to select and use the tools, materials, drawings and equipment necessary to perform aircraft maintenance tasks. It also provides them with the knowledge needed to enable them to work effectively and safely in an aircraft maintenance environment. Topics covered include: tools and equipment and their use, aircraft drawings and manuals, inspection and tolerance checking, electrical measurements, disassembly and reassembly, aircraft weighing and weight and balance calculations, aircraft handling; corrosion prevention removal, assessment and re-protection, non-destructive testing, aircraft storage and preservation and finally aircraft maintenance procedures.

Aircraft and their Systems

30 credits

This module first discusses the operation and effect of primary and secondary aircraft flight controls and aerodynamic devices before moving on to an in depth study of the basic construction of airframes which includes a look at the methods employed to check the accuracy of construction. This is followed by a detailed investigation of all of the aircraft mechanical and electrical systems including but not limited to: electrical power generation and management, flight controls, landing gear, fuel, hydraulic, pneumatics, ice and rain protection, pressurisation, air conditioning, fire and smoke, waste and water, and lighting.

In each case, the depth of study will be sufficient to enable you to describe the layout of each system, explain its operation and interaction with other aircraft systems and, given a period of time to gain some practical experience, determine the serviceability of the system and investigate and identify basic faults in it. Practical maintenance experience, fault-finding techniques and an understanding of maintenance procedures and the appropriate action to be taken in the event of finding defects will be gained from other modules in the programme

The module also examines aircraft instrument systems including: pitot-static for measuring airspeed and altitude, remote and direct reading compasses, gyroscopic flight instruments; and a number of avionic systems including: on-board maintenance, integrated modular avionics, cabin and information. 

Aircraft Maintenance & Professional Practice

30 credits

This module is a primarily about aircraft maintenance and the environment and legal framework within which aircraft maintenance engineers must work. However, it also contains an element of professional practice and a lot of opportunities for students to develop and extend the academic skills gained in the first year of the programme.

The subjects of aviation legislation and human factors will be delivered in a series of lectures and a number of short lectures will be used to present information on the engineering council, the professional engineering institutes and the requirements of registration; and to introduce the topics of ethics and sustainability.

The maintenance element of the module will be delivered entirely through practical exercises that students will complete in simulated and/or real maintenance environments or through research on aircraft maintenance activities. the theory to support this having been delivered in other modules. Whilst completing the practical phase of the module, students will be expected to display maturity, responsibility and integrity and demonstrate a responsible attitude towards safety and the airworthiness of aircraft.

Aircraft Propulsion Systems

30 credits

The basic principles of operation, construction and performance of gas turbine engines are discussed and the respective terminology introduced. This various component parts (stages) of the engine are examined in detail and the layout and operation of engine systems are studied: fuel, lubrication, air distribution, anti-icing, starting, ignition, power augmentation and fire systems. The material covered should enable the student to inspect the various engine components and systems and make independent decisions regarding serviceability. The module looks at engine monitoring, ground operation and storage of engines. The final part of this topic examines the construction and operation of engine measuring and indication systems.

The module follows with a look at the aerodynamics principles of propellers and their construction, before looking at propeller assemblies, including a detailed study of: propeller pitch control, over-speed mechanisms and protection devices. Finally the module provides an overview of the need for synchronising synchrophasing and an explanation of how this is achieved.

The depth of study is sufficient to enable system serviceability to be confirmed and basic faults to be investigated so that the action necessary to restore the system to a serviceable condition can be taken.

The information above reflects the currently intended course structure and module details. Updates may be made on an annual basis and revised details will be published through Programme Specifications ahead of each academic year. The regulations governing this course are available on our website. If we have insufficient numbers of students interested in an optional module, this may not be offered.

Entry requirements

Typical offer 2023

A minimum of 64 UCAS tariff points from A levels in Mathematics and Physics at Grade C or above, a BTEC Extended National Diploma in Engineering at Grade Profile MPP or above, an Access to HE qualification in relevant science or engineering discipline or other qualifications deemed equivalent to the above. GCSE passes at Grade 4 and above in Mathematics, English and a science-based subject are also required.

Typical offer 2022

A minimum of 64 UCAS tariff points from A levels in Mathematics and Physics at Grade C or above, a BTEC Extended National Diploma in Engineering at Grade Profile MPP or above, an Access to HE qualification in relevant science or engineering discipline or other qualifications deemed equivalent to the above. GCSE passes at Grade 4 and above in Mathematics, English and a science-based subject are also required.

Additional requirements

Applicants with military and/or civil aircraft maintenance engineering experience or who have completed vocational aircraft engineering courses will be considered on an individual basis.

International

This course only accepts UK applicants.

Typical offer and UCAS points explained

Like most universities, we use the UCAS Tariff point system for our course entry requirements.

Find out more about UCAS Tariff points and see how A-level, AS level, BTEC Diploma and T-level qualifications translate to the points system.

Teaching and assessment

The programme balances assignments and examinations in almost equal measure. You will undertake formal lectures and practical work. As a student you will complete a course of designed to meet the knowledge requirements to be eventually become a qualified aircraft technician with the option to complete a top up programme to a full bachelor degree either one year full time or two years part time with Kingston University. This programme is validated and awarded by Kingston University.

Guided independent study (self-managed time)

When not attending timetabled sessions you will be expected to continue learning independently through self-study. This typically will involve reading journal articles and books, working on individual and group projects, undertaking preparing coursework assignments and presentations, and preparing for final assignments. Your independent learning is supported by a range of excellent facilities including online resources, the library and CANVAS, the online virtual learning platform.

Academic support

Our academic support team here at Kingston University provides help in a range of areas.

Dedicated personal tutor

When you arrive, we'll introduce you to your personal tutor. This is the member of academic staff who will provide academic guidance, be a support throughout your time at Kingston and who will show you how to make the best use of all the help and resources that we offer at Kingston University.

Your workload

48% of your time is spent in timetabled learning and teaching activity.

Year 1

Year 2

Year 1
  • Scheduled learning and teaching: 570 hours
  • Guided independent study (self-managed time): 630 hours
Year 2
  • Scheduled learning and teaching: 570 hours
  • Guided independent study (self-managed time): 630 hours

Contact hours may vary depending on your modules.

How you will be assessed

Assessment typically comprises exams (e.g. test or exam), practical (e.g. presentations, performance) and coursework (e.g. essays, reports, self-assessment, portfolios, dissertation). The approximate percentage for how you will be assessed on this course is as follows, though depends to some extent on the optional modules you choose:

Year 1

Year 2

Year 1
  • Coursework: 40%
  • Exams: 60%
Year 2
  • Coursework: 28%
  • Exams: 64%
  • Practical: 8%

Feedback summary

We aim to provide feedback on assessments within 20 working days.

Your timetable

Your individualised timetable is normally available to students within 48 hours of enrolment. Whilst we make every effort to ensure timetables are as student-friendly as possible, scheduled learning and teaching can take place on any day of the week between 9am and 6pm. For undergraduate students, Wednesday afternoons are normally reserved for sports and cultural activities, but there may be occasions when this is not possible. Timetables for part-time students will depend on the modules selected.

Class sizes

You will be part of an intimate cohort of students which supports dedicated academic guidance and advice and the opportunity to build a life-long network of colleagues.

Who teaches this course?

The Aircraft Engineering FdEng course is awarded by Kingston University and taught at Exeter College.

Exeter College Facilities

A £8.3 million Technology Centre at Monkerton opened in September 2012. The centre combines the training and teaching of aerospace, engineering and automotive students with access to state of the art equipment within world class facilities.

Course fees and funding

2023/24 fees for this course

UK full time: £7,745

2022/23 fees for this course

UK full time: £7,745

Need to know more?

Our undergraduate fees and funding section provides information and advice on money matters.

Additional costs

Depending on the programme of study, there may be extra costs that are not covered by tuition fees which students will need to consider when planning their studies. Tuition fees cover the cost of your teaching, assessment and operating University facilities such as the library, access to shared IT equipment and other support services. Accommodation and living costs are not included in our fees. 

Where a course has additional expenses, we make every effort to highlight them. These may include optional field trips, materials (e.g. art, design, engineering), security checks such as DBS, uniforms, specialist clothing or professional memberships.

Textbooks

Our libraries are a valuable resource with an extensive collection of books and journals as well as first-class facilities and IT equipment. You may prefer to buy your own copy of key textbooks, this can cost between £50 and £250 per year.

Computer equipment

There are open-access networked computers available across the University, plus laptops available to loan. You may find it useful to have your own PC, laptop or tablet which you can use around campus and in halls of residences. Free WiFi is available on each of the campuses. You may wish to purchase your own computer, which can cost between £100 and £3,000 depending on your course requirements.

Photocopying and printing

In the majority of cases written coursework can be submitted online. There may be instances when you will be required to submit work in a printed format. Printing, binding and photocopying costs are not included in your tuition fees, this may cost up to £100 per year.

Travel

Travel costs are not included in your tuition fees but we do have a free intersite bus service which links the campuses, Surbiton train station, Kingston-upon-Thames train station, Norbiton train station and halls of residence.

After you graduate

Students who successfully complete the FdEng can progress onto the Aircraft Engineering BEng (Hons) and top-up their award to an honours degree with a further one-year of full-time or two-years of part-time study.

Accreditation

The programme is accredited by the Royal Aeronautical Society as partially satisfying the educational requirements for registration as an Incorporated Engineer.