Mechanical Engineering MSc

Why choose this course?

This course, accredited by the Institution of Mechanical Engineers, is designed to provide you with the latest technological knowledge and industrial management skills, at an advanced level of study, in specific aspects of mechanical engineering that are in demand from industry. The course also provides you with a strategic overview of engineering and management skills necessary to take on leadership roles in major engineering projects.

The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng(Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration.

Key features

  • Teaching in many technical modules is backed up by appropriate hands-on experience and workshops, which can be transferred directly to your working environment.
  • Academic teaching is complemented by visits from industry experts. You will also have plenty of opportunities to attend relevant technical seminars, both within and outside the University.
  • You can tailor your course to enhance your career ambitions through your module choices, whilst the project dissertation gives you the opportunity to choose a field of study in which to establish yourself as a specialist.
Mode Duration Attendance Start date
Full time 1 year Delivered in one-week blocks September 2020, January and March 2021
Full time 2 years including professional placement Delivered in one-week blocks plus placement year September 2020, January and March 2021
Part time 2 years Delivered in one-week blocks September 2020, January and March 2021

Important: if you are an international student requiring a Tier 4 student visa to study in the UK you will also need an ATAS certificate for this course.

Location Roehampton Vale

Reasons to choose Kingston University

  • You will gain the latest technological knowledge and industrial management skills that the industry demands.
  • Through a research-based individual project you will be able to specialise in a chosen field. This can be an excellent selling point when seeking a job or promotion.
  • The course meets the requirements for Further Learning for a Chartered Engineer (CEng) if you already have an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc(Hons).

Accreditation

The MSc will meet, in part, the academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng(Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration.

It should be noted that graduates from an accredited MSc programme, who do not also have an appropriately accredited honours degree, will not be regarded as having the exemplifying qualifications for professional registration as a chartered engineer with the Engineering Council; and will need to have their first qualification individually assessed through the individual case procedure if they wish to progress to CEng.

Find out more about Further Learning by visiting the Institution of Mechanical Engineers website.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Please check the Engineering Council website for more information about accredited degrees.

What you will study

The programme is structured so that students have the opportunity to broaden and deepen their understanding of mechanical design engineering, modern materials application and advanced manufacturing technology. The programme is built on a comprehensive use of advanced computer-based mechanical engineering design analysis and problem solving using cutting-edge technologies such as finite elements analysis (FEA), computational fluid dynamics (CFD) and mechanism design analysis and control. The programme enables students to also gain the management and business skills necessary to take on leadership roles in major engineering projects.

The course is delivered with the support of external industrial speakers who bring their experience into the classroom so that students can learn how real problems can be solved using the techniques they have learned in the lectures. Throughout the course innovative teaching methods, with the aid of a virtual learning platform, will be used inside and outside the classroom to enhance the students learning experience.

One of the main features of the course is that many of its subject materials are highly research oriented and taught by active and internationally recognised research academics in the Faculty. This provides the students with additional opportunity to deepen their subject interest by selecting a research based project dissertation. 

Please note that this is an indicative list of modules and is not intended as a definitive list.

Teaching on this course usually takes place in two separate specific week blocks (Monday to Friday 9am–5pm). For further details please contact secpgstudentoffice@kingston.ac.uk.

For a student to go on placement they are required to pass every module first time with no reassessments.

Core modules

Option modules (choose one)

Core modules

Engineering Research Techniques, Entrepreneurship and Quality Management

30 credits

This module is designed to provide you with the research skills and techniques necessary to select and justify a research topic, plan project execution, use various resources to carry out a literature search and successfully complete the project and other module assignments on the course. It also addresses issues related to presentation of technical reports at master level and for the purpose of wider publication in learned media.

The module further develops your knowledge and skills in business and management, with a particular focus on entrepreneurship and innovation. It supports you in producing proposals for enterprise ideas such as new products or services, or innovations in existing processes or organisations. Concepts of total quality management to enhance quality of products and processes in an industrial setting are presented and application of supporting quality tools and techniques are discussed.

The module content is designed to enhance your employability potential in a variety of national and international industrial organisations, or career opportunities in research and development arena. It also equips you with a set of skills to set up your own business in an engineering innovation area should you wish to do so.

Computational Fluid Dynamics for Engineering Applications

30 credits

This option module is designed for students in mechanical engineering and allied subject areas to be able to extend existing knowledge and skills of relevant computational techniques and advanced mathematics developed at undergraduate level. Emphasis is placed on the solution to fluids problems in a realistic mechanical engineering context.

On successful completion of the module you will be able to:

  • Define and analyse simple engineering fluid flow problems using the Navier Stokes equations. Simplify flow problems and solve them.
  • Construct appropriate solid models for CFD analysis, set up the solution domain and generate suitable surface and volume grids via meshing tools.
  • Understand both flow physics and mathematical properties of governing of Navier Stokes equations and define appropriate boundary conditions.
  • Use CFD software to model flow problems of relevance to mechanical engineers. Analyse the results and compare with available data.
Advanced Stress Analysis and Materials

30 credits

This module is designed as an advanced option to extend your knowledge of the analytical techniques of stress analysis, plasticity theory and some of the more advanced theories behind finite element analysis.

The module also investigates properties of a range of modern materials and associated advanced manufacturing processes with a view to broaden your knowledge and skills when selecting a material for a complex engineering application. Use of case studies from extensive research activities of the academic staff is a main feature of this module, introducing you to career opportunities in industrial research and development.

Engineering Individual Project

60 credits

This is a core module for MSc courses in the School of Mechanical and Automotive Engineering, forming a capstone experience for students on these courses. The module allows you to research and study an engineering topic which is of personal interest, thus allowing you to demonstrate the mastery of your subject, and develop your ability to analyse and evaluate specific areas that may not have been previously covered in-depth in the course.

The vigorous structure of the module provides you with an opportunity to identify an industry-based (or research-focused) project area, establish a feasible hypothesis, find creditable solutions, analyse results and offer recommendations. The module enables you to acquire and appraise new knowledge and apply individual judgement to solve new and often complex engineering problems using cutting-edge technology. It also allows you to demonstrate high levels of responsibility, organisational capability and effective communication with others including the supervisor, wider research community and other stake holders. The module also encourages you to recognise, question and deal with the ethical dilemmas that are likely to occur in engineering professional practice and research.

The project applications can be individually tailored to support your career plan and prepare you to tackle real industrial problems with maturity and rationality hence enhancing your employability potential.

Option modules

Advanced CAD/CAM Systems

30 credits

The module covers advanced CAD/CAM techniques in the conceptual design and manufacture and is heavily focussed on the surface modelling and reverse engineering methods prior to manufacture. Also this module will cover rapid manufacturing methods involving mould design and machining tool path optimisation and full machining simulation verification, and machining collision avoidance.

Green Engineering and Energy Efficiency

30 credits

This option module deals with the criteria and practice of sustainable development within engineering industries. To be able to critically assess energy sources as to usage performance of engineering systems, components and processes in order to minimise industrial waste, scrap and pollution through the use of analytical methods; leading to recommendations for the design, specification  and manufacture of environmentally benign products.

On successful completion of the module, you will be able to:

  • Recognise the importance of National and European regulations in relation to renewable technologies in the construction and automotive industries.
  • Discuss environmentally related technologies and materials that are fundamental in a range of industries including construction, structural mechanics, automotive and environmental operations.
  • Discuss environmental issues related to resource provision and consumption necessary for the manufacture of engineered products, and analyse potential for the application of alternative energy sources.
  • Analyse manufactured product design in relation to materials and other resource requirements and apply key concepts to redesign or design products to be recyclable, sustainable with a minimisation of waste.
  • Specify and develop energy efficient and environmentally conscious products.
  • Critically evaluate the life cycle assessment in incorporation of sustainability at the conceptual design stage.
Mechatronics Design and Automation

credits

This module aims to develop your understanding of the main principles of robotic, industrial automation and mechatronics systems. It covers:

  • mechatronics control and its application in automation;
  • the functions of a robot and its embedded systems such as sensors and actuators;
  • how to build dynamic models of robotics systems and design feedback control algorithms;
  • advanced techniques such as fuzzy logic and digital logic design to optimise control in automation processes; and
  • artificial neural networks and adaptive control.
Professional Placement

120 credits

The Professional Placement module is a core module for those students following a masters programme that incorporates an extended professional placement. It provides students with the opportunity to apply their knowledge and skills in an appropriate working environment, and develops and enhances key employability and subject specific skills in their chosen discipline. Students may wish to use the placement experience as a platform for the major project or future career.

It is the responsibility of individual students to find and secure a suitable placement opportunity; this should not normally involve more than two placements which must be completed over a minimum period of 10 months and within a maximum of 12 months. The placement must be approved by the Course Leader, prior to commencement to ensure its suitability. Students seeking placements will have access to the standard placement preparation activities offered by Student Engagement and Enhancement (SEE) group.

Read more about the postgraduate work placement scheme.

The information above reflects the currently intended course structure and module details. Updates may be made on an annual basis and revised details will be published through Programme Specifications ahead of each academic year. The regulations governing this course are available on our website. If we have insufficient numbers of students interested in an optional module, this may not be offered.

Work placement scheme

Many postgraduate courses at Kingston University allow students to take the option of a 12-month work placement as part of their course. The responsibility for finding the work placement is with the student; we cannot guarantee the placement, just the opportunity to undertake it. As the work placement is an assessed part of the course, it is covered by a student's Tier 4 visa.

Find out more about the postgraduate work placement scheme.

Entry requirements

Typical offer

  • Good honours degree or equivalent in a relevant engineering discipline accredited by the Institution of Mechanical Engineers in partial fulfilment of the academic requirements for chartered engineer status, and/or suitable industrial experience. Mechanical engineering, manufacturing, aerospace/aeronautical engineering, civil engineering must include modules such as stress analysis and/or structures. Degrees in material science and product design will be considered.
  • We will consider applicants not requiring Matching Section under SARTOR 3 but interested in advanced study at MSc level on an individual basis. Typically these applicants must have a relevant good honours level degree and/or industrial experience.

Please note: each application is assessed on an individual basis and may be subject to additional requirements, such as undertaking short course(s), work experience and/or English language qualification(s). Meeting particular minimum entry requirements does not automatically guarantee a place.

International

In order to complete your programme successfully, it is important to have a good command of English and be able to apply this in an academic environment. Therefore, if you are a non-UK applicant* you will usually be required to provide certificated proof of English language competence before commencing your studies.

For this course the minimum requirement is Academic IELTS of 6.5 overall with 6.0 in Writing and 5.5 in Reading, Listening and Speaking.

Applicants who do not meet the English language requirements may be eligible to join our pre-sessional English language course.

Please make sure you read our full guidance about English language requirements, which includes details of other qualifications we'll consider.

* Applicants from one of the recognised majority English speaking countries (MESCs) do not need to meet these requirements.

Teaching and assessment

The assessment strategy is designed to support your learning experience. Assessment criteria are clear, transparent and explicit and the scope of each assessment is discussed with students within modules. The course employs a combination of assessment methods will be used throughout the course. These elements include module assignments, module examinations, in-class tests, experiment reports, industrial visit reports, seminars, verbal presentations and the project dissertation.

Each module leader is responsible for ensuring that the method of assessment reflects the aims and learning objectives of the module, is demanding and stimulating and at the appropriate master level. Formative assessments are embedded into the delivery pattern of all the modules and are designed to help students learn more effectively by giving them feedback to improve their performance and feed forward towards summative assessments. Reflective practice by students and feedback from designated Personal tutors will also form part of the formative assessments. Group activities are an important part of the course teaching and assessment strategy where students learn and improve through peer feedback.

The individual project provides a challenge to the candidate to undertake a real world problem because most projects are industrially orientated.  Students will be given close guidance to select a project which is relevant to the chosen field. During the project, the student will be expected to apply the knowledge learnt during the course to achieve agreed deliverables, whilst satisfying any given constraints. Key skills in communication, presentation, literature search, problem analysis, project planning, report writing and solution justification are all part of the learning objectives defined in the field.

Coursework are mainly submitted electronically  on the CANVAS of each module. You are reminded of the faculty policy for the late submission of coursework. Any work submitted up to a week late will be capped at minimum 50%, anything submitted later than this will receive a zero mark.

Guided independent study

When not attending timetabled sessions you will be expected to continue learning independently through self-study. This typically will involve reading journal articles and books, working on individual and group projects, undertaking preparing coursework assignments and presentations, and preparing for exams. Your independent learning is supported by a range of excellent facilities including online resources, the library and CANVAS, the online virtual learning platform.

Support for postgraduate students

As a student at Kingston University, we will make sure you have access to appropriate advice regarding your academic development. You will also be able to use the University's support services

Your workload

Type of teaching and learning

Year 1

Year 1
  • Scheduled teaching: 270 hours
  • Guided independent study: 1230 hours

18% of your time is spent in timetabled teaching and learning activity.

How you will be assessed

Type of assessment

Year 1

Year 1
  • Coursework: 88%
  • Exams: 12%

Feedback summary

We aim to provide feedback on assessments within 20 working days.

Class sizes

­You will be part of an intimate cohort of students which provides dedicated academic guidance and advice as well as the opportunity to build a life-long network of colleagues. Some modules are common across other postgraduate programmes, therefore you may be taught alongside postgraduates from other courses.

Formula Student competition

Join this course at Kingston and you too could join the KU e-Racing team and help them drive for success in Formula Student year after year. It's a great chance to apply theory to a real workplace project, enjoy the thrills of appearing at a major racing circuit - and have something amazing to add to your CV.

About Formula Student

IMechE's Formula Student is the largest annual student motorsport event in the world and is delivered in partnership with key industry players including Airbus, Jaguar Land Rover, Shell, National Instruments and Mercedes AMG Petronas. Ross Brawn OBE (Team Principal, Mercedes AMG Petronas F1 team) is the patron and the event is entered by 141 university teams from 34 countries across the globe. 

With its real-world bias, Formula Student is viewed by the motor industry as the standard for engineering graduates to meet. In fact, many high-profile motorsports engineers have participated in Formula Student whilst at university including Andrew Shovlin, chief race engineer of Mercedes AMG Petronas F1 team and James Painter, engineering lead of vehicle integration working on the BLOODHOUND land speed record.

KU e-Racing shines at Silverstone

The week after the likes of Lewis Hamilton and Sebastian Vettel raced at the British Grand Prix, students from around the world competed in their own motorsport event at Silverstone in the Institution of Mechanical Engineers' Formula Student competition. Kingston University's KU e-Racing proved to be the only UK team with a viable electric vehicle - read how they got on.

You can also see the KU e-Racing car being assembled, the chassis being constructed and the car being transported to Silverstone, as well as glimpses of the business presentation made as part of the University's entry. Produced by students Karam Rajaby and Joseph Bannister (Television and Video Technology BSc(Hons)), Amy Nicole Tinker (Media Technology BSc (Hons)); and Luka Stokic (Automotive Engineering BSc(Hons)).

Watch out for their full-length documentary on Formula Student.

Kingston motorsport

Students on this course can also get involved with the successful Kingston University motorsport team.

Who teaches this course?

This course is delivered by the School of Mechanical and Automotive Engineering in the Faculty of Science, Engineering and Computing.

The Faculty's wide selection of undergraduate and postgraduate courses covers a diverse range of subject areas, from aerospace to geography; from maths and computing to biotechnology; and many more. Our collaborative set-up provides new opportunities for our students, and we design our courses with industry professionals to ensure you stay up to date with the latest developments.

School of Mechanical and Automotive Engineering

The School of Mechanical and Automotive Engineering offers a range of teaching and research activities, delivering a portfolio of courses from foundation degrees right through to doctoral level.

The School has a hands-on teaching approach. Our courses encompass applications from all areas of engineering, providing our students with the knowledge and flexibility they need to work across many industries, both in the UK and overseas.

Postgraduate students may run or assist in lab sessions and may also contribute to the teaching of seminars under the supervision of the module leader.

Facilities

Our modern teaching environment  

There is a wide range of facilities for practical work at our Roehampton Vale campus, where this course is based. You will have access to a modern environment with the latest technology and industry-standard equipment, including:

  • rolling roads;
  • automotive testing facilities;
  • a Lotus Exige; and
  • cars and motorcycles built by engineering students.

We also have a dedicated postgraduate workroom with high spec PCs and a range of software.

The £4 million Hawker Wing, which opened in December 2007, provides three floors of extra space for students and staff at Roehampton Vale, including improved learning and teaching facilities.

Fees for this course

Home and European Union 2020/21

  • MSc full time £9,200
  • MSc part time £5,060

Overseas (not EU) 2020/21

  • MSc full time £14,500
  • MSc part time £7,975

Fees for the optional placement year

If you choose to take a placement as part of this course, you will be invoiced for the placement fee in Year 2. Find out more about the postgraduate work placement scheme and the costs for the placement year.


Funding and bursaries

Kingston University offers a range of postgraduate scholarships, including:

If you are an international student, find out more about scholarships and bursaries.

We also offer the following discounts for Kingston University alumni:

What our graduates say

I chose Kingston because the course content was right for the business and myself. The module delivery was excellent for part-time students which enabled me to plan my work efficiently and minimise my time away from the office.

My work with Thales is varied and I am still learning every day building on both my technical and commercial knowledge. The projects I work on can be hugely rewarding, designing a product and seeing it through to manufacture and testing is very satisfying.

The skills I have gained in CAD/CAM and financial resourcing can be directly transferred to the work place and help towards gaining Chartered Engineer status. I would recommend investing in a postgraduate qualification to anyone who wants to enhance their knowledge of mechanical engineering principals and commercial awareness. 

David Cockrem

I selected Kingston University because it offered excellent engineering tools, module options and lecture content, with input from industry guest lecturers. The teaching modules were delivered in one-week blocks which suited me and my employer.

For my thesis, Dr Redha Benhadj-Djilali guided me throughout and provided quality direction and motivation to achieve outstanding results. The impressive facilities in the workshops and laboratories also helped me complete my research.

Since graduating, I have achieved IEng status and also successfully designed, manufactured and launched my own consumer product into the UK marketplace. I am now a Principle Mechanical Design Engineer within the R&D department at Formula One Management where I develop mechanical solutions to support F1 broadcasting activities.

Bob Bhatti

What this course offers you

  • The Mechanical Engineering course provides a strategic overview of engineering and management issues.
  • It will develop your professional, analytical and management skills, as well as improving your technical skills and knowledge. For example, you will gain communication, teamwork, IT and problem-solving skills.
  • Each module combines a stimulating mix of lectures, practical laboratory work, group work, case studies and presentations.
  • You usually take the Industrial Project Review and Analysis in industry. This gives you the opportunity to solve a real-world engineering problem.
  • Input from industry experts complements the teaching throughout the course.
  • You can choose to study the course full-time or part-time to fit in with work commitments. September and January start dates give you extra flexibility.
  • We regularly review all our postgraduate courses to make sure that they are up-to-date, reflect industry needs and are comparable to other university courses.

Links with business and industry

How the engineering staff work with industry partners

Our excellent industrial links have developed over many years and throughout many countries. Some examples include work with:

  • Matra-Marconi Space Ltd;
  • Ericsson;
  • Balfour Beatty;
  • The National Health Service; and
  • British Gas.

Our Industrial Advisory Committee reviews and advises industrial activities. The Committee acts as a forum for discussing teaching, research and consultancy to industry.

Industrial project review

This course features an industrial project review and analysis module, which is designed to be taken in industry. It gives you the chance to address a real-world problem in an engineering environment. Throughout the course, academic teaching is complemented by input from industry experts.

Research areas

Engineering research

Many academic staff are engaged in a range of research and consultancy activities funded by the Research Councils, the European Union, the government, trade unions and industry. These activities ensure our staff are in touch with the latest industry thinking and bring best practice to your studies.

Research centres

Many of our staff in the Faculty of Science, Engineering and Computing are research active. This ensures they are in touch with the latest thinking and bring best practice to your studies.

Current research projects at the Applied Engineering Research Centre cover the following areas:

  • CFD and fire modelling;
  • applied engineering;
  • manufacturing; and
  • material processing and surface engineering.

Extra activities for this course

There are always interesting activities taking place at Kingston and exciting opportunities to take advantage of.

Our lively research culture is reflected in our regular seminars. Recent examples include:

  • International Conference on Autoclaved Aerated Concrete;
  • Recent Advances in the Micromechanics of Ductile Fracture;
  • Environmental Degradation in Adhesively Bonded Structures;
  • Modelling of Deformation and Failure of Polymers: Why is Bridging of Length and Time Scales Necessary?; and
  • Why Bolt It When You Can Bond It? The Gluing Evolution.