Aerospace engineering at Kingston has an innovative curriculum, excellent links with industry and cutting edge facilities. Kingston is the perfect place to study aerodynamics, propulsion, structures, dynamics and materials.
You'll put theory straight into practice, applying what you learn to the problems of aerospace design and taking part in a group design project.
We offer both BEng and MEng degrees and a specialised pathway in Space Technology.
The MEng has an extra year of study and can provide a faster route to chartered engineer (CEng) status. It also has the option to integrate an industrial placement with further studies (subject to accreditation by RAeS).
If you are studying in Sri Lanka please go to our International partner institutions page.
Course | Attendance | UCAS code | Year of entry |
---|---|---|---|
Aerospace Engineering MEng | 4 years full time | H425 | 2023 2024 |
Aerospace Engineering MEng | 5 years full time including sandwich year | H426 | 2023 2024 |
Aerospace Engineering BEng (Hons) | 3 years full time | H421 | 2023 2024 |
Aerospace Engineering BEng (Hons) | 4 years full time including sandwich year | H422 | 2023 2024 |
Aerospace Engineering BEng (Hons) | 4 years full time including foundation year | H408 | 2023 2024 |
Aerospace Engineering (Space Technology) MEng | 4 years full time | H402 | 2023 2024 |
Aerospace Engineering (Space Technology) MEng | 5 years full time including sandwich year | H404 | 2023 2024 |
Aerospace Engineering (Space Technology) BEng(Hons) | 3 years full time | H400 | 2023 2024 |
Aerospace Engineering (Space Technology) BEng(Hons) | 4 years full time including sandwich year | H401 | 2023 2024 |
Aerospace Engineering (Space Technology) BEng(Hons) | 4 years full time including foundation year | H405 | 2023 2024 |
Important: if you are an international student requiring a Student Route visa to study in the UK, you will need an ATAS certificate if you wish to apply for the Aerospace Engineering MEng course. Read more.
Once you have completed the Aerospace Engineering Foundation Year (UCAS code H408), you can transfer to Aerospace Engineering BEng(Hons), dependent on satisfactory grades.
Location | Roehampton Vale |
You can choose to take an optional sandwich year between Years 2 and 3 (BEng (Hons)) and Year 3 (MEng only). MEng students have to study and earn 120 credits in Year 3 while taking their industrial placement using work-based learning by carrying out an industrial individual project as well as applied business and management analysis. They also need to study an aerospace engineering science module using blended/distance learning model (subject to RAeS accreditation).
The Space Technology pathway is the same as the standard programme for the first two years but students are expected to work on a space-related project in the Engineering Project Management module at level 5. In the final year students must take Space Vehicle Design and work on a space related individual project and group project.
Year 1 provides an introduction to aerospace engineering under Professional Practice, and will underpin the skills and knowledge required for further specialised study. You will study a mix of analytical subjects, such as mathematics, structures, dynamics, electronics, thermodynamics and engineering applications, alongside an introduction to the profession of engineering.
30 credits
The principal aim of this module is to provide students with a flavour of what is involved in engineering design and to develop the good academic and professional practice needed to succeed during the course and attain professional status.
The module introduces the key aspects involved in:
The module develops good academic and professional practice by developing skills in self-reflection and recording professional development. The basic principles of measurement and manufacturing processes in a workshop and testing environment are also addressed in the module.
30 credits
The module introduces you to the fundamentals of structural analysis (statics and dynamics) and the mechanical behaviour of a broad range of engineering materials. The mechanics part provides an understanding of the behaviour of particles and rigid bodies whilst stationary and in motion. Bodies such as trusses in equilibrium are studied and the external and internal parameters such as force, moment, stress, strain, etc. are defined and calculated. The analysis of structural components will be developed with theoretical and numerical skills that are necessary in the design of real world structures. This section also introduces the dynamics of particles and rigid bodies with their engineering applications. Material test methods will be used to determine the deformations and failures of the various engineering materials. A selection of materials for engineering applications, such as metals, ceramics, polymers and composites, will be studied including their carbon footprint and their impact on the environment. The module is primarily delivered through lectures supported by tutorial sessions and laboratories.
30 credits
The aim of this module is to provide a thorough background in engineering mathematics and equip you with the mathematical skills essential for solving engineering problems. The module also introduces the use of computing methods in engineering. The mathematics part comprises algebra, functions, logarithms, trigonometry, calculus, differential equations and vectors. The computing part covers the use of software for problem solving, visualisation and data representation. The emphasis is on using mathematical and computational tools to solve engineering problems.
30 credits
This module introduces you to the fundamentals of fluid mechanics and engineering science. Taught to mechanical, aerospace and civil engineering students, it will use this broad audience to enhance a collaborative learning environment. The fluid mechanics section will cover the fundamental properties of fluids and the main basic conservation equations used and their engineering applications. It also introduces the concept of dimensions and the SI units of measurement. The engineering science section will consider subject areas relevant to each discipline. For mechanical and aerospace engineering students it will introduce thermodynamics and electrical engineering and for civil engineering students it will consider soil mechanics. The thermodynamics topic covers the key concepts of system, work, heat and the main thermodynamics laws with special reference to their engineering applications. The electrical engineering section covers the basic concepts and electrical quantities such as charge, current, resistance, voltage, power and energy before looking at fundamental electrical components and how they can be incorporated into both AC and DC circuits. The soil mechanics topic will introduce the fundamental properties of soils and their essential aspects.
Year 2 will introduce you to specialised topics in aerospace engineering such as aerodynamics, propulsion, structures, dynamics and materials. It includes further study of mathematics, electronics, control and computing. A design-orientated module (Aerospace Engineering Design and Project Management) will apply the principles taught in the other modules to problems of aerospace design.
30 credits
The module draws upon the learning experiences of modules EG4012 and EG4013 and provides further learning for the potential aerospace engineer. The basics of aerodynamics and aerospace propulsion are introduced with a view to provide the ability to analyse, formulate and solve elementary problems. This is underpinned by covering the mathematics required for the BEng/MEng Aerospace Engineering course. The mathematics side of the module is taught in the context of the solution of engineering problems.
Two dimensional potential flows, production of aerodynamic forces, wind tunnel testing, compressible flows, shock waves and computational fluid dynamics (CFD) are some of the topics covered on the aerodynamics part of the module. The propulsion side revisits and extends conservation of energy and the laws of thermodynamics. Gas turbines, heat transfer and combustion processes are some of the other areas that receive attention. Solutions of ordinary and partial differential equations, Eigen values and Eigen vectors are some of the topics considered in the analytical methods side of the module.
30 credits
This module builds deals with advanced electronic systems and concepts from classical control, including feedback control systems and analysis of their response and the effects of the feedback loop. The content of this module is informed by the research performed by the teaching team. In order to improve your employability, a range of engineering programming tools are used to model and analyse the performance of engineering systems, enabling learning of the functionality of control analysis and design software.
30 credits
The module includes principles and commercial practices for the management of engineering projects and related wider business operations. The nature of project engineering and business management is considered in the context of quality, time, risk and sustainability aspects. The module is contextualised for mechanical and automotive professionals to promote and broaden knowledge of how companies and organisations work in the project and business environment. This module continues effective team working as well as developing interpersonal skills.
30 credits
This module reinforces your prior knowledge of statics, materials and dynamics and introduces topics of particular relevance to aerospace studies. The module includes further work on the analysis of beams, materials used in aerospace such as composites and develops the students understanding of vibration theory as well as application of dynamics of particles and rigid bodies in aerospace. Topics such as Bredt-Batho theory and aircraft dynamic performance and stability and Finite Element application in static and dynamic analysis of structures are also introduced. The module is primarily delivered through interactive lectures and practical laboratory sessions and is supported by tutorials, where students have to practise using problem sets. Course materials are available via VLE where appropriate.
In Year 3, you will deepen your knowledge of specialised aerospace engineering subjects and will broaden your expertise in other areas of engineering. BEng students undertake a major group design project and an individual research project along with business and management as well as further and more in depth studies of aerodynamics, propulsion, structure, materials and dynamics including applied computational techniques widely used in industry. MEng students have the opportunity of integrating industrial placement with further studies using a combination of work-based learning as well as blended and distance learning (subject to accreditation by RAeS).
30 credits
This module extends the analysis of aerodynamic and propulsive systems with a view to provide the ability to design and evaluate aerodynamic loadings on aerospace vehicles as well as their propulsion systems. It also extends your knowledge and skill base on solving aerospace engineering problems with advanced analytical approaches, namely computational fluid dynamics with a view to equip you with up-to-date flow and structure analysis techniques.
Subsonic, supersonic, compressible, incompressible, boundary layer, inviscid and viscous flows are all considered in high-speed and low-speed aerodynamics. On the propulsion side, the topics considered are air breathing cycles, axial flow turbo-machines, and combustion systems. The computational fluid dynamics part includes basic concept and solution procedure for problems such as flow over airfoil and wing by using commercial package suit ANSYS as a major tool.
30 credits
This is a level 6 module that extends and deepens your ability to apply the analytical techniques used to design aerospace structures. These analytical techniques are used to enhance your understanding of the functions of typical aerospace structural components. You will study the multifaceted discipline of materials technology applicable to typical aerospace structures based on fracture and fatigue analysis and the finite element method. It also provides you with an understanding of aircraft dynamic stability, performance, and structural dynamics characteristics. This is achieved not only through analysis but also through a live flight test. The wide ranging set of topics considered in the module gives you ample opportunity to see how the various disciplines interact in the aerospace design process.
30 credits
This module gives you an opportunity to work as a member of a design team on an Aerospace/Mechanical/Civil design project. It also further develops your broader understanding of the business context of engineering activities. It will develop a set of skills and techniques which will prepare you for employment.
30 credits
This module is a core module in the BEng Aerospace Engineering programmes and forms a capstone experience for the course. This major project is undertaken throughout the final year of the BEng programme, allowing you to research and study in depth a topic in aerospace engineering which is of personal interest, thus allowing you to demonstrate your ability to:
Professionally this module allows you to show high levels of responsibility and organisational capability (through arranging meetings with supervisors, setting project goals and meeting appropriate deadlines) as well as demonstrating effective communication with others (through completing reports and a log book, as well as presenting a seminar and producing a display poster for the project). Furthermore the module encourages you to recognise, question and deal with the ethical dilemmas that are likely to occur in engineering professional practice and research.
Furthermore this module provides you with an opportunity to further enhance the independence and employability skills industry is looking for in its graduate engineers, especially those seeking professional recognition as Incorporated or Chartered Engineers.
30 credits
This module is intended to teach students space systems engineering as applied to the design of space vehicles, to give a detailed understanding of space vehicle design, the space project cycle and insight into the core components of a space vehicle. Context will be provided through reference to past UK, European and international space missions and the development of a system model.
It is expected that the participating student has already gained a basic understanding of space technology principles prior to taking this module.
The module content is informed by current space engineering practices and industrial requirements. The content and method of teaching is continually updated with best practices to improve the students' employability within the space industry.
30 credits
This module gives you an opportunity to work as a member of a design team on an Aerospace/Mechanical/Civil design project. It also further develops your broader understanding of the business context of engineering activities. It will develop a set of skills and techniques which will prepare you for employment.
30 credits
This module is a core module in the BEng Aerospace Engineering programmes and forms a capstone experience for the course. This major project is undertaken throughout the final year of the BEng programme, allowing you to research and study in depth a topic in aerospace engineering which is of personal interest, thus allowing you to demonstrate your ability to:
Professionally this module allows you to show high levels of responsibility and organisational capability (through arranging meetings with supervisors, setting project goals and meeting appropriate deadlines) as well as demonstrating effective communication with others (through completing reports and a log book, as well as presenting a seminar and producing a display poster for the project). Furthermore the module encourages you to recognise, question and deal with the ethical dilemmas that are likely to occur in engineering professional practice and research.
Furthermore this module provides you with an opportunity to further enhance the independence and employability skills industry is looking for in its graduate engineers, especially those seeking professional recognition as Incorporated or Chartered Engineers.
30 credits
This module extends the analysis of aerodynamic and propulsive systems with a view to provide the ability to design and evaluate aerodynamic loadings on aerospace vehicles as well as their propulsion systems. It also extends your knowledge and skill base on solving aerospace engineering problems with advanced analytical approaches, namely computational fluid dynamics with a view to equip you with up-to-date flow and structure analysis techniques.
Subsonic, supersonic, compressible, incompressible, boundary layer, inviscid and viscous flows are all considered in high-speed and low-speed aerodynamics. On the propulsion side, the topics considered are air breathing cycles, axial flow turbo-machines, and combustion systems. The computational fluid dynamics part includes basic concept and solution procedure for problems such as flow over airfoil and wing by using commercial package suit ANSYS as a major tool.
30 credits
This is a Level 6 module that extends and deepens your ability to apply the analytical techniques used to design aerospace structures. These analytical techniques are used to enhance your understanding of the functions of typical aerospace structural components. You will study the multifaceted discipline of materials technology applicable to typical aerospace structures based on fracture and fatigue analysis and the finite element method. It also provides you with an understanding of aircraft dynamic stability, performance, and structural dynamics characteristics. This is achieved not only through analysis but also through a live flight test. The wide ranging set of topics considered in the module gives you ample opportunity to see how the various disciplines interact in the aerospace design process.
Year 4 of the MEng course includes a multidisciplinary group design project that helps to integrate and apply your academic knowledge, develop your teamworking and communication skills, and increase your understanding of real-world engineering issues.
30 credits
This module builds on the prior knowledge gained in stress analysis and structure of aircraft materials and other properties or an equivalent course of study. It is designed to extend your knowledge of the analytical techniques of stress analysis, plasticity theory and the importance of modern materials in advanced manufacturing processes.
Some of the more advanced theory behind finite element analysis is investigated. The module is primarily delivered through lectures supported by tutorials and by laboratories where applicable. Course materials are available via Canvas where appropriate.
30 credits
This module is designed for students in aerospace engineering and allied subject areas that have a prior exposure to relevant computational techniques and advanced mathematics. It intends to extend your knowledge and skills beyond the basic fluid mechanics methods, normally introduced at early undergraduate level, and to provide a theoretical and practical introduction to computational fluid dynamics (CFD). In the practical sessions, emphasis is placed on the solution of fluids problems in a realistic aerospace engineering context and on giving you the opportunity to develop awareness of the limitations of CFD software and to develop an understanding of good practice in your applications. The software used for this module is ANSYS ICEM/CFX/Fluent.
The module is also designed to provide you with advanced computational skills in fluid dynamics hence enhancing your employment potential in aerospace, automotive, energy and other similar industries. Additional support materials including excerpts from core texts will be available through Canvas.
This module consists of two week long block sessions, the lecture programme forms the first block (and is delivered by the mechanical department). The second week consists of additional tutorials, workshops and where possible guest lectures.
60 credits
This core module, undertaken throughout the final year of the course, provides a capstone element. It gives students the opportunity to work on a major engineering design problem, in a team, in a way which closely parallels a real-world project. It also provides an opportunity for students to further develop academic skills gained earlier in the programme.
On successful completion of the module, you will be able to:
30 credits
This module further equips graduates with a good understanding of the challenges of space engineering, a set of tools and references to tackle future design problems, and a set of contacts with industry to help begin their careers.
Building on the space vehicle design course at Level 6, the module is intended to provide experience at space mission (compared to space vehicle) analysis and design through a range of largely self-taught activities, and is assessed through seminars, design build and test, and short written assignments.
This module will provide (a) in addition to the knowledge from Space Vehicle Design AE6030, a thorough understanding of the challenges of space engineering, (b) a toolset, reference material and confidence to tackle future design problems they may face, and (c) experience in the preliminary design, trade-offs and mission element selection for space mission. A space mission in addition to space vehicle(s), comprises instruments & platforms, launch vehicles, orbits and trajectories and ground segment plus user interfaces.
The module will be delivered primarily through self study, supplemented by guided tutorials, computing labs, online collaboration and industrial guest lectures. Additional support materials will be available on Canvas.
60 credits
This core module, undertaken throughout the final year of the course, provides a capstone element. It gives students the opportunity to work on a major engineering design problem, in a team, in a way which closely parallels a real-world project. It also provides an opportunity for students to further develop academic skills gained earlier in the programme.
On successful completion of the module, you will be able to:
30 credits
This module is designed for students in aerospace engineering and allied subject areas that have a prior exposure to relevant computational techniques and advanced mathematics. It intends to extend your knowledge and skills beyond the basic fluid mechanics methods, normally introduced at early undergraduate level, and to provide a theoretical and practical introduction to computational fluid dynamics (CFD). In the practical sessions, emphasis is placed on the solution of fluids problems in a realistic aerospace engineering context and on giving you the opportunity to develop awareness of the limitations of CFD software and to develop an understanding of good practice in your applications. The software used for this module is ANSYS ICEM/CFX/Fluent.
The module is also designed to provide you with advanced computational skills in fluid dynamics hence enhancing your employment potential in aerospace, automotive, energy and other similar industries. Additional support materials including excerpts from core texts will be available through Canvas.
This module consists of two week long block sessions, the lecture programme forms the first block (and is delivered by the mechanical department). The second week consists of additional tutorials, workshops and where possible guest lectures.
30 credits
This module is designed for students in aerospace engineering and allied subject areas that have a prior exposure to relevant computational techniques and advanced mathematics. It intends to extend your knowledge and skills beyond the basic fluid mechanics methods, normally introduced at early undergraduate level, and to provide a theoretical and practical introduction to computational fluid dynamics (CFD). In the practical sessions, emphasis is placed on the solution of fluids problems in a realistic aerospace engineering context and on giving you the opportunity to develop awareness of the limitations of CFD software and to develop an understanding of good practice in your applications. The software used for this module is ANSYS ICEM/CFX/Fluent.
The module is also designed to provide you with advanced computational skills in fluid dynamics hence enhancing your employment potential in aerospace, automotive, energy and other similar industries. Additional support materials including excerpts from core texts will be available through Canvas.
This module consists of two week long block sessions, the lecture programme forms the first block (and is delivered by the mechanical department). The second week consists of additional tutorials, workshops and where possible guest lectures.
30 credits
This module builds on the prior knowledge gained in stress analysis and structure of aircraft materials and other properties or an equivalent course of study. It is designed to extend your knowledge of the analytical techniques of stress analysis, plasticity theory and the importance of modern materials in advanced manufacturing processes.
Some of the more advanced theory behind finite element analysis is investigated. The module is primarily delivered through lectures supported by tutorials and by laboratories where applicable. Course materials are available via Canvas where appropriate.
Optional modules only run if there is enough demand. If we have an insufficient number of students interested in an optional module, that module will not be offered for this course.
If you would like to study one of our engineering degrees at Kingston University but are not yet ready for Year 1 of an undergraduate course, a foundation year is ideal. Please see the engineering foundation year course page for details.
Embedded within every course curriculum and throughout the whole Kingston experience, Future Skills will play a role in shaping you to become a future-proof graduate, providing you with the skills most valued by employers such as problem-solving, digital competency, and adaptability.
As you progress through your degree, you'll learn to navigate, explore and apply these graduate skills, learning to demonstrate and articulate to employers how future skills give you the edge.
At Kingston University, we're not just keeping up with change, we're creating it.
The course is taught by the Department of Aerospace and Aircraft Engineering. Staff have a wide range of experience across research and industry and continue to practice and research at the cutting edge of their discipline. This ensures that our courses are current and industry informed ensuring you get the most relevant and up-to-date education possible.
We have a dedicated campus for engineering students at Roehampton Vale, a short journey from Kingston town centre and close to Richmond Park.
We offer a wide range of specialist facilities on site, supported with software technology and laboratory technicians.
Renowned companies are involved in course delivery, placements, final year projects and industry talks. Companies range from global leaders KLM Engineering, Marshall Aerospace and the Defence Group, Airbus UK, Astrium Eads, GE Aircraft and Lockheed, to small and medium enterprises such as Aero Optimal, Aircraft Research Associates and Aim Aviation.
Postgraduate students may run or assist in lab sessions and may also contribute to the teaching of seminars under the supervision of the module leader.
Depending on the programme of study, there may be extra costs that are not covered by tuition fees which students will need to consider when planning their studies. Tuition fees cover the cost of your teaching, assessment and operating University facilities such as the library, access to shared IT equipment and other support services. Accommodation and living costs are not included in our fees.
Where a course has additional expenses, we make every effort to highlight them. These may include optional field trips, materials (e.g. art, design, engineering), security checks such as DBS, uniforms, specialist clothing or professional memberships.
There is a wide range of facilities for practical work at our Roehampton Vale campus, where this course is based. You will have access to a modern environment with the latest technology, including:
Our graduates have gained jobs with Boeing, BAE Systems, Qinetiq, Airbus, Rolls-Royce, Thales, General Electric and British Airways. Many graduates go on to study at masters and doctoral level.
The Aerospace Engineering MEng course is accredited by the Royal Aeronautical Society for 2018 entry and satisfies, in full, the academic requirements for Chartered Engineer (CEng) and Incorporated Engineer (IEng) registration.
The Aerospace Engineering BEng(Hons) course is accredited by the Royal Aeronautical Society for 2018 entry and satisfies, in part, the academic requirements for Chartered Engineer (CEng) registration and in full, Incorporated Engineer (IEng) registration.
Find out more about the full criteria and validity for Chartered Engineer (CEng) status and Incorporated Engineer (IEng) status.
This degree has been accredited by the Royal Aeronautical Society under licence from the UK regulator, the Engineering Council. Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.
Please check the Engineering Council website for more information.
Placements:
"To be successful, tomorrow's leaders will need to be far more rounded individuals than ever before. They will collaborate in pursuit of shared goals. They will guide, challenge and support...They will have an appetite for change and a hunger for continuous improvement, and they will have an ethos of learning and development..." Jeremy Darroch, Former Chief Executive, Sky.
"Doing a placement year effectively gives you one foot in the door of a future job and to stand out from the crowd... as well as enhancing my CV... and future interviews. It's a great motivator to be successful in my studies as it only serves to open even more doors and gain more skills." Placement student at Jagex Games Studios Ltd.
There is a lot of support available for students looking to secure a placement (e.g. a jobs board with placement vacancies, help with writing CVs and mock interviews). Getting a placement and passing the placement year are ultimately the student's responsibility.
Placements can be with large multinational companies, international companies, local companies and small start-ups; offering a diverse range of posts. Here are some examples of employers and roles:
Construction-based placement employers | Construction-based placement roles |
---|---|
RG Group Multiplex Costain Willmott Dixon Fluor |
Assistant site manager Assistant trades package manager Assistant logistics manager Health and safety officer Construction engineer |
Science-based placement employers | Science-based placement roles |
Reckitt and Benckiser GSK Drug Control Centre Minton Treharne and Davies Ltd Various local and international hospitals |
Bioanalytical sciences Lab assistant Pharmacy assistant Sports coach |
Engineering-based placement employers | Engineering-based placement roles |
Airbus BAM Nuttall Nissan Bosch Wozair |
Analysis of aircraft structure Construction resources specialist Site engineer assistant |
Computing and IS-based placement employers | Computing and IS-based placement roles |
Disney Sony Interactive Entertainment Europe IBM McKinsey Intel |
Database coordinator Software developer Website developer App developer |
Mathematics-based placement employers | Mathematics-based placement roles |
Lloyds Banking Group AXA Allianz PAU Education, Spain |
Analyst Investment solutions Research analyst Accounts assistant |
"I'm just going into my final year of the MEng. I chose the option to do a sandwich year and did a placement at Airbus. Kingston University stood out for me because of its state-of-the-art facilities. They have a hands-on approach coupled with the theory that engineers must learn to be successful. With flexible machine labs and experienced technicians, I was able to spend all the time I needed working on my dissertation."
"My project was to design, develop and build a micro jet engine using design by analysis techniques. This meant I had to produce a preliminary design using turbine cycle analysis and from there produce a detailed CAD (computer aided design) model. Air flow simulations were then performed using the CFD (computational fluid dynamics) package, ANSYS CFX. The airflow characteristics were observed and from the results each main component was redesigned and optimised before manufacture to ensure the engine would work."
Engine specifications:
"The idea of using design by analysis came from my placement year at Airbus, where I worked within the simulation and modelling team for landing gear systems. Testing of the engine is planned for early next month."
Here is a selection of Aidan's work.
Up until 31 July 2022, this course was taught in the Faculty of Science Engineering and Computing. For students enrolling from September 2022, the course will be delivered by the Faculty of Engineering, Computing, and the Environment. There will be no impact on the teaching or the award of the degree.
The scrolling banner(s) below display some key factual data about this course (including different course combinations or delivery modes of this course where relevant).
The information on this page reflects the currently intended course structure and module details. To improve your student experience and the quality of your degree, we may review and change the material information of this course. Course changes explained.
Programme Specifications for the course are published ahead of each academic year.
Regulations governing this course can be found on our website.