Search our site
Search our site
  • Pharmaceutical Science BSc (Hons)

Pharmaceutical Science BSc (Hons)

Why choose this course?

Pharmaceutical science is concerned with the design, development and analysis of new drugs for clinical purposes. It explores the different sources of medicine, how they work in the body and how they can be effectively formulated, (eg tablets, creams, inhalers), analysed and tested. This course provides a wide understanding of all aspects of the pharmaceutical industry and will provide you with the necessary skills to gain employment in this industry.

Attendance UCAS code/apply Year of entry
3 years full time BB22 2019
2020
4 years full time including sandwich year BBG2 2019
2020
4 years full time including foundation year B208 2019
2020
6 years part time Apply direct to the University 2019
2020
Location Penrhyn Road

Reasons to choose Kingston University

  • This course is one of the first to be accredited in the UK by Academy of Pharmaceutical Scientists.
  • Through optional modules and a year-long research project, you can tailor your degree to your own interests and career goals.
  • You can boost your employability through a year's industrial placement.

What you will study

Please note that this is an indicative list of modules and is not intended as a definitive list. Those listed here may also be a mixture of core and optional modules.

Year 1

Year 2

Optional sandwich year

Final year

Year 1 introduces biology, chemistry, and physiology, and pharmaceutical science itself. The Foundation Chemistry for Pharmaceutical Science module introduces formulation science, pharmacokinetics and molecular modelling, emphasising practical work and instrumental techniques. An academic skills module covers all the fundamental transferable skills that employers value eg. use of IT, problem solving. An academic skills module covers mathematics, statistics, generic study skills and information technology, giving you skills valued by employers.

Core modules

Introduction to Spectroscopy and Experimental Techniques

30 credits

This module provides an introduction to basic laboratory techniques and procedures such as weighing and volumetry, proceeding to descriptions of laboratory manipulations, elemental analysis and general practical knowledge.  There is included an introduction to spectroscopic techniques in terms of simple theory, as well as a practical introduction to the identification of simple organic compounds.  These compounds will sometimes be synthesised in the course of the practical element of the module, which will also serve to demonstrate laboratory techniques of preparation and purification of these organic materials.

Academic Skills for Molecular Sciences

30 credits

This is a core module for all chemistry and pharmaceutical science programmes. The module aims to give you a thorough grounding in mathematics, statistics, key and transferable skills (eg. exam strategy, effective use of calculators, library and referencing, avoiding plagiarism, problem solving and personal development planning etc.) and IT skills.

Foundation Chemistry

30 credits

This is a core module for Pharmaceutical Science degree courses. The module revises some content taught at A-Level before expanding on this content to give foundation knowledge of the core chemistry concepts required for progress within the field of pharmaceutical science.

Bioscience 1

30 credits

This module introduces the fundamental principles of the biochemical processes that occur within the cell.  he module deals with prokaryotic and eukaryotic cell structure, basic tissue types, microbial entities and organisms that include; viruses, bacteria and fungi. In addition, It is designed to introduce cell biology and microbiology, particularly with reference to human physiology and the pathological microorganisms affecting it. The module progresses from the subcellular through to the cellular and then to tissues and a few selected organ systems; examining the mechanisms that maintain homeostatic balance.

On successful completion of the module, you will be able to:

  • Describe the major cell components of both prokaryotic and eukaryotic cells, their chemical metabolites and macromolecular components, together with the structure and composition of cellular entities including; chromosomes, genes, membranes and organelles.
  • Describe the variety of organisms studied in the discipline of microbiology and the fundamental aspects of disease caused by microbial organisms.
  • Explain the common metabolic pathways involved in the anabolism and catabolism of simple and complex molecules and their control and regulation.
  • Describe information storage and utilisation within cells.
  • Discuss the structural and functional characteristics of major tissue types of the human body and relate the importance of the variety of organ systems in the body to homeostatic mechanisms.

Year 2 places emphasis on organic and medicinal chemistry and develops practical skills, especially in pharmaceutical analysis - important in relation to the actions and characterisation of drugs. Building on the pharmaceutical chemistry learned in Year 1, you will study the properties and formulation of pharmaceuticals. You will also study the effect of drugs in living systems and the principles of the immune system. There will be an introduction to micro-organisms in relation to human disease, their control and safe working practices. Year 2 explores organic and medicinal chemistry applied to the design and synthesis of drug molecules. Year 2 also focuses on the experimental aspects of pharmaceutical science, developing skills for conducting independent laboratory investigations. There is also the opportunity to develop other transferable skills, important to your employability and career planning.

Core modules

Organic and Medicinal Chemistry

30 credits

This is a core module Level 5 module for the Chemistry and Pharmaceutical Science fields.

The module seeks to develop and expand your knowledge of both Organic Chemistry and Medicinal Chemistry subject areas and introduces important principles, reactions and mechanisms in organic chemical reactivity as well as basic mechanisms of drug action. It develops your understanding of the methodology of organic synthesis following concepts introduced at level 4 and includes important organic chemistry topics such as carbanion reactivity of carbonyl compounds, the reactions of aromatic and heteroaromatic compounds, stereochemistry, asymmetric synthesis and retrosynthesis

It also introduces the specific reasons why a small amount of a drug molecule can exert a complex biological response. It uses examples from a range of medicinal areas in order to illustrate these key processes as well as giving an introduction on the ideas of drug design and the role this plays in the modern pharmaceutical industry.

This module also gives you experience of using spectroscopic techniques for chemical structure elucidation. Lectures and workshops are designed to develop your problem solving and team working skills. Practical skills will also be developed during two 3-hour laboratory experiments from week 9-12 of teaching block 1. These experiments will reinforce the concepts of enolate and aromatic chemistry taught during teaching block 1. In teaching block 2, you will also present a poster concerning a medicinal natural product, to integrate organic synthesis and medicinal chemistry in a real-world context. This module is essential those wishing to take the more advanced Level 6 Organic Chemistry modules.

Pharmacology and Pharmaceutics

30 credits

This module incorporates elements of pharmacology, toxicology, immunology and pharmaceutics (including formulation science). The module gives a grounding in the processes of absorption, distribution, metabolism and excretion which underlies many of the toxicological and pharmacological effects of biological agents. In addition, how drug formulation affects the bioavailability of a drug and how the physiology of the human system affects these processes will be discussed. The module includes an introduction to immunology which is considered important as recent developments in drug development involve antibodies as therapeutic agents. Major factors involved in the effective and safe delivery of therapeutic agents to human populations will be reviewed.

On successful completion of the module, you will be able to:

  • Demonstrate how different formulations of a medicinal product affect pharmacodynamics (how drugs cause change in the body) and pharmacokinetics (absorption, distribution, metabolism and excretion).
  • Outline the concepts of both the innate and adaptive immune system.
  • Examine the effects and response to environmental, chemical and microbial toxins.
  • Discuss the various types of dosage form design and explain the relevant physico-chemical principles involved in the choice of dosage form.
Analytical Science

30 credits

This module is a core requirement in the Pharmaceutical Science, Forensic science and Biochemistry fields. The module introduces students to the applications of analytical science within analytical biochemistry, clinical chemistry, forensic analysis and the pharmaceutical sciences. It allows you to build your knowledge, practical skills and interpretation skills whilst implementing the analytical process model using scenario-based learning.

Practical and Research Skills in Pharmaceutical Science

30 credits

This module deals with new laboratory techniques to enable development of practical skills and data interpretation through a range of experiments that encompass organic synthesis, drug formulation and pharmacology/immunology. The module aims to provide the skills and methodologies to partake in a research programme, such as literature searching, data analysis and producing a short critical analysis of a research article.

On successful completion of the module, you will be able to:

  • Employ a variety of practical techniques to prepare isolate, purify and identify synthesised compounds and/or drugs/metabolites.
  • Use appropriate computer-aided resources to complete assignments, draw chemical structures; to retrieve information from databases and analysis of data and/or research paper.
  • Demonstrate an awareness for research planning and execution.
  • Produce a short critical analysis of a current/topical research journal article.
  • Carry out research on potential careers open to pharmaceutical science graduates and to present and explain findings to peer group.
  • Plan and report practical work in a manner appropriate to the pharmaceutical industry.

An optional sandwich year between Years 2 and 3 provides the opportunity to gain experience of how pharmaceutical science is applied in an industrial situation. The industrial placement tutor will help you find a paid placement.

Final year exposes you to specialised areas of pharmaceutical science which includes how drugs are manufactured in industry and how they are introduced onto the shelf. You will learn about new and innovative research linked to pharmaceutical science including new methods of drug delivery. The Topics in Pharmaceutical Science module enables specialism in particular, specialist areas of pharmaceutical science. You will also undertake a year-long research project, applying, in an experimental context, the theoretical knowledge you have gained in the previous two years. Final year has two option modules: one develops and enhances analytical skills, crucial to all aspects of the production of pharmaceuticals in the UK; the other deepens knowledge of natural product chemistry.

Core modules

Project

30 credits

This module is a core module for Level 6 Pharmaceutical Science, Chemistry, Pharmaceutical and Chemical Sciences top up and Pharmaceutical Studies students and an option module for Forensic Science students. The module provides you with an opportunity to undertake a scientific project and develop skills required to plan a project, develop a methodology, analyse the data and disseminate the results. Two types of projects are offered to you: an experimental or a non-experimental project. The end point is the same in both cases: review and critical evaluation of data generated from laboratory experiments or collected from published works.

Drug Development

30 credits

This module deals with the pharmacology involved in the treatment of various disease types and details the synthetic chemistry behind the development of drug molecules and evaluates the structure activity effects from pharmacodynamic and pharmacokinetic perspectives. The module also outlines the process for intellectual property protection and exploitation, toxicological events that might affect the body and the body's immunological response to toxic insult or disease.

On successful completion of the module, you will be able to:

  • Demonstrate a sound knowledge of the mode of action of a range of modern drugs against a number of disease states.
  • Demonstrate practical skills in drug synthesis and spectroscopic characterisation.
  • Critically evaluate the pharmacodynamic and pharmacokinetic effects of changes to the structure of certain drugs and suggest appropriate synthetic methodology to accomplish this.
  • Describe a range of toxins and their effects on the body and how the body may respond.
  • Explain the process for patent protection and the steps involved in bringing a drug from bench to market.
Topics in Pharmaceutical Science

30 credits

This module is a core module for the Pharmaceutical Science BSc and Integrated Masters courses. This module aims to address the need for a synoptic/capstone module which draws the whole course together.  It introduces various aspects of chemical and pharmaceutical industry pertinent to their future career and aims to cover a wide range of topics covering Drug Delivery, Polymers and Biomaterials, patents, intellectual property, health and safety, and legislation.  Many of the descriptive parts of the module are reinforced by workshops and group debate to develop their communication, teamwork and independent learning skills. There are also lectures, workshops and practical sessions to demonstrate and reinforce the concept learnt.

Organic and Natural Product Chemistry OR Advanced Analytical Science

30 credits

Choose from the following:

The information above reflects the currently intended course structure and module details. Updates may be made on an annual basis and revised details will be published through Programme Specifications ahead of each academic year. The regulations governing this course are available on our website. If we have insufficient numbers of students interested in an optional module, this may not be offered.

Entry requirements

Typical offer

  • 112 UCAS points from a minimum of two A Levels or equivalent Level 3 qualifications.
  • A Levels to include minimum grade C in A-level Chemistry and one other science subject (second science can be Biology, Physics or Maths). General Studies and Critical Thinking not accepted. A minimum of AS Biology is required when Biology A-level not taken.

Alternatively, BTEC Diploma/Extended Diploma in Applied Science (Chemistry) only must have merits in the following units:

  • Unit 1 : "Principles and Applications in Science 1"
  • Unit 5: "Principles and Applications in Science 2"
  • Unit 13: "Applications of Inorganic Chemistry"
  • Unit 14: "Applications of Organic Chemistry"

Candidates are normally required to hold five GCSE subjects grades A*-C including Mathematics and English Language (or comparable numeric score under the newly reformed GCSE grading).

Alternative routes

We will consider a range of alternative Level 3 qualifications such as an Access Course in a relevant Science subject (Applied Science or Chemistry) which has been passed with 112 UCAS points including 15 L3 credits in Chemistry with minimum of 10 L3 credits at Distinction and 5 L3 credits at Merit; 15 L3 credits in Biology at minimum of Merit grade.

Applications from those that have undertaken a Science foundation year will also be considered.

International

We welcome applications from International Applicants. View our standard entry requirements from your country.

All non-UK applicants must meet our English language requirements. For this course it is Academic IELTS of 6.0, with no element below 5.5.

Teaching and assessment

Teaching include lectures, workshops, tutorials and practical classes.

Guided independent study

When not attending timetabled sessions you will be expected to continue learning independently through self-study. This typically will involve reading journal articles and books, working on individual and group projects, undertaking preparing coursework assignments and presentations, and preparing for exams. Your independent learning is supported by a range of excellent facilities including online resources, the library and CANVAS, the online virtual learning platform.

Academic support

Our academic support team here at Kingston University provides help in a range of areas.

Dedicated personal tutor

When you arrive, we'll introduce you to your personal tutor. This is the member of academic staff who will provide academic guidance, be a support throughout your time at Kingston and who will show you how to make the best use of all the help and resources that we offer at Kingston University.

Your workload

Type of teaching and learning

Year 1
Year 2
Year 3
  • Scheduled teaching
  • Guided independent study
  • Scheduled teaching
  • Guided independent study
  • Scheduled teaching
  • Guided independent study

How you will be assessed

Type of assessment

Year 1
Year 2
Year 3
  • Coursework
  • Exams
  • Coursework
  • Practical
  • Exams
  • Coursework
  • Practical: 7%
  • Exams

Feedback summary

We aim to provide feedback on assessments within 20 working days.

Your timetable

Your individualised timetable is normally available to students within 48 hours of enrolment. Whilst we make every effort to ensure timetables are as student-friendly as possible, scheduled teaching can take place on any day of the week between 9.00am and 6.00pm. For undergraduate students Wednesday afternoons are normally reserved for sports and cultural activities, but there may be occasions when this is not possible. Timetables for part-time students will depend on the modules selected.

Class sizes

To give you an indication of class sizes, this course normally enrols 85 students and lecture sizes are normally 85­-130­.  However this can vary by module and academic year.

Who teaches this course?

The course is taught at the Faculty of Science, Engineering and Computing. Faculty staff have a wide range of experience across research and industry and continue to practice and research at the cutting edge of their discipline. This ensures that our courses are current and industry informed ensuring you get the most relevant and up to date education possible. 

Staff will use their experience and professional networks to hone your skills and shape you into the next generation of science, technology, engineering and mathematics (STEM) graduates.

Facilities

There is a wide range of facilities for practical work at our Penrhyn Road campus, where this course is based. You will have access to a modern environment with the latest equipment, including:

  • the £9.8 million Eadweard Muybridge building with state-of the art laboratories;
  • specialist equipment, such as:
    • gas and liquid chromatography;
    • electron and confocal microscopy;
    • a range of spectrometers, including mass spectrometers, infrared spectrometers and nuclear magnetic resonance spectrometers;
    • nuclear science equipment;
    • thermal analysis;
    • x-ray diffractometers; and
    • electrochemical analysis;
  • computing laboratories and a team of IT technicians to offer assistance.

Course fees and funding

2019/20 fees for this course

The tuition fee you pay depends on whether you are assessed as a 'Home' (UK or EU), 'Islands' or 'International' student. In 2019/20 the fees for this course are:

 Fee category  Amount
Home (UK and EU students) £9,250*
International Year 1 (2019/20): £14,200
Year 2 (2020/21): £14,600
Year 3 (2021/22): £15,000
Islands (Channel Islands and Isle of Man) To be confirmed by the Island Authorities

 * If your course involves a foundation year, the fee for that year for home and EU students will be £9,250 in 2019/20. The fees shown above apply for year 1 of the degree from 2018/19 onwards (fees may rise in line with inflation for future academic years). These fees are annual and may increase in line with inflation each year subject to the results of the Teaching Excellence Framework (TEF).

Eligible UK and EU students can apply to the Government for a tuition loan, which is paid direct to the University. This has a low interest-rate which is charged from the time the first part of the loan is paid to the University until you have repaid it.

Additional costs

Depending on the programme of study, there may be extra costs which are not covered by tuition fees, which students will need to consider when planning their studies.

Tuition fees cover the cost of your teaching, assessment and operating University facilities such as the library, IT equipment and other support services. Accommodation and living costs are not included in our fees. 

Where a course has additional expenses, we make every effort to highlight them. These may include optional field trips, materials (e.g. art, design, engineering), security checks such as DBS, uniforms, specialist clothing or professional memberships.

Text books

Our libraries are a valuable resource with an extensive collection of books and journals as well as first-class facilities and IT equipment. You may prefer to, or be required to, buy your own copy of key textbooks.

Computer equipment

There are open-access networked computers available across the University, plus laptops available to loan. You may find it useful to have your own PC, laptop or tablet which you can use around campus and in halls of residences.

Free wifi is available on each of the campuses.

Printing

In the majority of cases coursework can be submitted online. There may be instances when you will be required to submit work in a printed format. Printing and photocopying costs are not included in your tuition fees.

Travel

Travel costs are not included but we do have a free intersite bus service which links the campuses and halls of residence.

Lab equipment

For this course you will need to purchase a lab coat and safety glasses at approximately £20.

Note for EU students: UK withdrawal from the European Union

EU students starting a programme in the 2019/20 academic year will be charged the same fees as those who began in 2018/19 (subject to any annual increase in accordance with the applicable terms and conditions and the Kingston University fees schedule).

They will also be able to access the same financial support for the duration of their course as students who began in 2018/19, even if their degree concludes after the UK's exit from the EU.

No assurances have yet been made regarding 2020/21 and beyond. Updates will be published here as soon as they become available.

After you graduate

The pharmaceuticals sector is a growth area within the UK chemicals industry, with good job prospects for pharmaceutical scientists. Our graduates work in areas such as research, development, quality assurance, marketing and sales. Many have gained jobs in laboratories, in hospitals and in educational establishments. Graduates also often progress to a range of postgraduate studies, including teacher training and PhDs.

Examples of graduate destinations

Types of jobs

  • Research scientist
  • PhD student
  • Drug safety associate
  • Strategic alliance manager
  • Research assistant
  • Quality control analyst
  • Clinical trial project manager
  • Pharmacy technician
  • Microbiologist
  • Optical assistant/dispenser
  • Marketing research
  • Medical publisher

Employers

  • Parallel Drug Imports
  • Johnson & Johnson
  • Procter & Gamble
  • Braun Medical
  • St George's Hospital
  • EH Lilly
  • NHS
  • King Opticians
  • Alcontrol Lab
  • Nemaura Pharma Ltd
  • Quotient BioResearch
  • Syngenta
  • Medtrack

Careers and recruitment advice

The Faculty of Science, Engineering and Computing has a specialist employability team. It provides friendly and high-quality careers and recruitment guidance, including advice and sessions on job-seeking skills such as CV preparation, application forms and interview techniques. Specific advice is also available for international students about the UK job market and employers' expectations and requirements.

The team runs employer events throughout the year, including job fairs, key speakers from industry and interviews on campus. These events give you the opportunity to hear from, and network with, employers in an informal setting.

Employability preparation at Kingston University

In addition to building expertise in your own discipline, our courses will also help you to develop key transferable skills that you'll need for professional life or further study once you graduate.

 

As well as a range of careers and employability activities at Kingston, we also offer you the chance to apply and develop your skills in live contexts as an integral part of your course. Opportunities include:

  • placements;
  • working or studying abroad;
  • volunteering;
  • peer mentoring roles; and
  • internship opportunities within and outside the University.

In your final year, you'll get the opportunity to complete a major 'capstone' project where you can apply the knowledge and skills you have acquired to a range of real issues in different contexts. This is a great way to learn and is a valuable bridge to employment or further research at masters level.

 

Courses available after you graduate

If you decide that you would like to go on to postgraduate study after your undergraduate course, we offer a 10 per cent discount on our postgraduate course tuition fees to our alumni.

Pharmaceutical Science at Kingston University

Pharmaceutical Science student Sonia talks about her experience studying at Kingston University:

What our students say

The first time I came to this university all the lecturers looked very friendly and they were happy to help me, explain everything to me and even check my essays and reports before submission. The workshops were also very useful, they taught us how to prepare for exam questions. Also my coursemates in Kingston were very friendly as well. The English department I used to improve my English was very good. I really liked it.

I remembered that the first time I came to Kingston, Dr Freestone and Dr Ho were the first lecturers that wished me Happy Chinese New Year. This really impressed me, because that was the first time I heard someone wish me this in the UK.

Huiwoon Yeo – Pharmaceutical Science BSc(Hons)

Kingston University has taught me a great deal about the ways to learn, how to compromise in group projects, taught me patience while working with people with strong opinions but mostly showed me the wide range of good people and personalities that on paper shouldn't work but in reality do. Out of all I've learnt I can say Kingston University has proved that sometimes you should expect the unexpected and have fun along the way.

I'd like to thank Dr Bal Ghatora for everything. For her support and open door policy – which I used frequently. She understood our position and helped whether it related to the module she taught us or not. Nobody else could have been there for me like she was.

Debbie Boateng – Pharmaceutical Science BSc(Hons)

What our graduates say

I wanted to study in London and after seeing the fantastic NSS scores for the pharmaceutical science programme at Kingston, it seemed like the best option in the area. The town was also attractive as it seemed like there was a lot to do along with the excellent connections to central London.

A typical day on the Pharmaceutical Science BSc(Hons) course would consist of lectures, workshops and laboratory sessions between 9.00am and 6.00pm. Not all days were this long, however it is fairly common. Workshops were a chance to practice questions eg. past exam questions with an academic present; these sessions were a good chance to reflect on the material from lectures and work with your classmates to solve problems and engage in academic discussion. Practical sessions ranged between 2 and 3 hours in length and  involved a variety of experiments - such as synthesising different therapeutic compounds, carrying out analysis on samples to become familiar with analytical instrumentation and lots more.

Personally, the most interesting module was Drug Development in the third year of the course. This particular module covered such a broad range of topics, it was difficult not to enjoy it. We studied cardiovascular, neurodegenerative and autoimmune diseases to understand the mechanisms by which the disease occurs and subsequently, how drugs can be designed to treat them and the specifics of their modes of action. This module is definitely one to look forward to.

Not only did the variety of laboratory sessions prepare the students to go into industry, but the variety of academic material also prepared us to go into areas of intellectual property and more office-based jobs. For me personally, the research project undertaken in my third year has most prepared me for when I graduate as I will be going on to begin a masters and PhD,  therefore this research experience was excellent for my academic confidence and research skills.

The best thing about studying at Kingston has been the staff.  They have been so welcoming and supportive throughout my three years, as well as providing the best teaching I could have hoped for.

Be sure to read through the module descriptors on the course page on the University website so you fully understand what the course entails. If you are interested in how therapeutic compounds work and how they are synthesised, then this course is perfect for you. This course opens so many doors career-wise within the pharmaceutical industry, so with this degree behind you, it's your choice.

Felix Sheffield – Pharmaceutical Science BSc(Hons) Graduated July 2018

Previously, I completed two years in another UK university offering pharmaceutical science. I made the decision to transfer to Kingston University for a better academic experience. Personally, it was one of the best decisions I have ever made. The support and guidance that I received from staff and the access to ultra-modern facilities at Kingston University enabled me to reach my full potential.

Almost all the lecturers have an open door policy which has had a great impact on my learning as it gave me the opportunity to be even more inquisitive as a scientist. Kingston allowed me to be a confident, proactive student with no limit to my progression. During my final year, I worked on a project titled: 'Inverse agonism in hypertrophied cardiac cells. 'My supervisor gave me a huge amount of support and constantly believed in me so that I performed particularly well in this module which really made me feel like a skilled and competent laboratory scientist.

The course layout is extremely well structured and accessible for all. Having experience in two universities, I feel that Kingston knew how to get the best out of me and all the other students enrolled on the pharmaceutical science degree. The coursework that I did throughout the years helped me develop many skills. I learnt to be innovative during a business pitch assessment. I learnt how to manage and lead group projects, as well as how to be independent and lead projects independently as I did in my project.

I was also a taekwondo athlete for the University, competing at several student and national competitions. The sports programme at Kingston helped me financially which allowed me to juggle my commitments so that I could still compete at a high level. There is a great gym on campus which again allowed me to keep a healthy balance as a student and an athlete.

The staff will push you to the maximum so that you make the most of your abilities and talents, which is the best thing as a young, keen student. If you are willing, they will be there to get you through to reach your goal. I am pleased to say I graduated with a first-class honours in Pharmaceutical Science BSc in July 2018. Two months later, I have landed my first role in an energy and chemical consultancy company in Oxford.

Kiran Gabbi – Graduated 2018

Work placement year

How you can work in industry during your course

Placements:

  • provide work experience that is relevant to your course and future career;
  • improve your chances of graduating with a higher grade degree;
  • enhance your CV;
  • lead to a graduate job;
  • enable you to earn a year's salary whilst studying (the vast majority of placements are paid); and
  • help you to select your final-year project.

"To be successful, tomorrow's leaders will need to be far more rounded individuals than ever before. They will collaborate in pursuit of shared goals. They will guide, challenge and support...They will have an appetite for change and a hunger for continuous improvement, and they will have an ethos of learning and development..." Jeremy Darroch, Former Chief Executive, Sky.

"Doing a placement year effectively gives you one foot in the door of a future job and to stand out from the crowd... as well as enhancing my CV... and future interviews. It's a great motivator to be successful in my studies as it only serves to open even more doors and gain more skills." Placement student at Jagex Games Studios Ltd.

  • 81% placement students and 34% non-placement students got a first or 2.1 (Faculty of Computing, Information Systems and Mathematics, 2008).
  • 100% of placement students during 2008 recommend doing a placement (Faculty of Computing, Information Systems and Mathematics, 2008).
  • Many employers offer a graduate job to their successful placement students.

There is a lot of support available for students looking to secure a placement (eg a jobs board with placement vacancies, help with writing CVs and mock interviews). Getting a placement and passing the placement year are ultimately the student's responsibility.

For further information please contact the placements team by telephone 020 8417 2969 or email secplace@kingston.ac.uk.

Examples of placements

Placements can be with large multinational companies, international companies, local companies and small start ups; offering a diverse range of posts. Here are some examples of employers and roles:

Construction-based placement employers Construction-based placement roles 
RG Group
Multiplex
Costain
Willmott Dixon
Fluor
Assistant site manager
Assistant trades package manager
Assistant logistics manager
Health and safety officer
Construction engineer
Science-based placement employers  Science-based placement roles
Reckitt and Benckiser
GSK
Drug Control Centre
Minton Treharne and Davies Ltd
Various local and international hospitals
Bioanalytical sciences
Lab assistant
Pharmacy assistant
Sports coach
Engineering-based placement employers  Engineering-based placement roles
Airbus
BAM Nuttall
Nissan
Bosch
Wozair
Analysis of aircraft structure
Construction resources specialist
Site engineer assistant
Computing and IS-based placement employers Computing and IS-based placement roles
Disney
Sony Interactive Entertainment Europe
IBM
McKinsey
Intel
Database co-ordinator
Software developer
Website developer
App developer
Mathematics-based placement employersMathematics-based placement roles
Lloyds Banking Group
AXA
Allianz
PAU Education, Spain
Analyst
Investment solutions
Research analyst
Accounts assistant

Key information set

The scrolling banner(s) below display some key factual data about this course (including different course combinations or delivery modes of this course where relevant).

Undergraduate study
Site menu